. Space Travel News .




.
TIME AND SPACE
Innovative device for quantum simulations
by Staff Writers
New York NY (SPX) Jun 13, 2011

File image.

A team of researchers from Columbia Engineering, the Italian National Research Council, Princeton University, University of Missouri, and University of Nijmegen (Netherlands) has developed an artificial semiconductor structure that has superimposed a pattern created by advanced fabrication methods that are precise at the nanometer scale. The pattern is similar to the honeycomb lattice that occurs in graphene.

The device, called "artificial graphene" (AG), simulates quantum behavior of strongly interacting electrons. The research team sees the AG-device as a first step towards the realization of an innovative class of solid-state quantum simulators to explore fundamental quantum physics.

In order to study quantum phenomena that are difficult to be directly observed, scientists use artificial ad-hoc designed systems - quantum simulators - that can be controlled and manipulated in the laboratory. Researchers have only just begun to develop quantum simulators using different technologies.

The AG-device is the first quantum simulator to be based on a semiconductor material that is designed with the goal of uncovering quantum behavior of electrons.

Phenomena such as high-temperature superconductivity, ferromagnetism, and exotic states of matter such as quantum Hall liquids and spin liquids originate from mutual interactions among many electrons.

Exact calculations of the behavior of these complex systems are an impossible task even for the more sophisticated and powerful computers.

Quantum simulators help bypass the problem by replacing the "uncomputable" quantum system with a controllable artificial one that is able to emulate the dynamics of the original system.

"Quantum simulators based on novel artificial semiconductor structures are at the crossroads of quantum science and innovative technologies," says Aron Pinczuk, Applied Physics Professor at The Fu Foundation School of Engineering and Applied Science and Physics Professor at the School of Arts and Sciences, Columbia University.

"While the frontiers of quantum physics are being explored with giant accelerators, in this branch of condensed matter science we employ advanced methods that expand the state-of-the-art in growth and processing of semiconductors. We could describe our work on quantum simulators as 'probing quantum weirdness in a nano-nut-shell.'"

The simulator developed by the researchers consists of a honeycomb lattice realized on the surface of a Gallium Arsenide (GaAs) heterostructure using advanced nanofabrication methods. The artificial honeycomb lattice structure replicates that of graphene, a material in which electrons behave in a peculiar way because of the crystal-lattice geometry.

With the ability to modify key parameters such as the lattice constant of the artificial lattice, the researchers are in the position to explore different regimes of electron-electron interactions in graphene-like systems.

Vittorio Pellegrini and Marco Polini from NEST Laboratory of Istituto Nanoscienze-Cnr and Scuola Normale Superiore note that the AG-device has been tested with a "first run" trial that generated an unexpected peculiar quantum state. "The early data we collected are quite promising and show the great potential our device has," they say.

"The next step in this research is a fine-tuning of the AG-device". The researchers are excited about the potential of creating venues for the uncovering of novel quantum states that could, eventually, lead to new device concepts and eventually to an array of applications, for instance, in advanced information processing or in cryptography.

Pinczuk added that they hope next to achieve new breakthroughs through the creation of smaller nanofabricated structures reaching limits in which individual units in patterns have lengths of five nanometers. "This is a state-of-the-art that should open access to physics and materials science that has not yet been explored!"

The research is reported in the June 3rd, 2011, issue of Science. The work is co-authored by Vittorio Pellegrini and Marco Polini of the NEST Laboratory of Istituto Nanoscienze-Cnr and Scuola Normale Superiore of Pisa; and by Aron Pinczuk, Applied Physics Professor at The Fu Foundation School of Engineering and Applied Science and Physics Professor at the School of Arts and Sciences, Columbia University; along with researchers from the Universities of Nijmegen, Missouri, and Princeton.




Related Links
CnrNano
Columbia Engineering
Understanding Time and Space

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TIME AND SPACE
Neutron analysis explains dynamics behind best thermoelectric materials
Oak Ridge TN (SPX) Jun 13, 2011
Neutron analysis of the atomic dynamics behind thermal conductivity is helping scientists at the Department of Energy's Oak Ridge National Laboratory gain a deeper understanding of how thermoelectric materials work. The analysis could spur the development of a broader range of products with the capability to transform heat to electricity. Researchers performed experiments at both of ORNL's ... read more


TIME AND SPACE
Shipments Of Sea Launch Zenit-3Sl Hardware Resume On Schedule

US Army supports student launch program

Boeing Opens Exploration Launch Systems Office in Florida

Payload processing underway for ASTRA 1N

TIME AND SPACE
Camera Duo on Mars Rover Mast Will Shoot Color Views

NC State Students Look To Support Manned Mission To Mars

New solar system formation models indicate that Jupiter's foray robbed Mars of mass

Opportunity Studies Rock Outcrop

TIME AND SPACE
Looking at the volatile side of the Moon

The Power of A Moon Rock

Parts of moon interior as wet as Earth's upper mantle

NASA-Funded Scientists Make Watershed Lunar Discovery

TIME AND SPACE
'Dwarf planet' is covered in crystal ice

Carbon monoxide detected around Pluto

The PI's Perspective: Pinch Me!

Later, Uranus: New Horizons Passes Another Planetary Milestone

TIME AND SPACE
Rage Against the Dying of the Light

Second Rocky World Makes Kepler-10 a Multi-Planet System

Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

Bennett team discovers new class of extrasolar planets

TIME AND SPACE
ISRO to begin flight testing of GSLV MkIII in next two years

Teledyne and Aerojet form alliance to build rocket engines

Homemade Danish rocket takes off

U.K. spaceplane passes technical review

TIME AND SPACE
Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

Venezuela, China to launch satellite next year

Top Chinese scientists honored with naming of minor planets

TIME AND SPACE
Comet-chasing probe goes into hibernation in 10-year trek

Rosetta to sleep through loneliest leg of comet mission

Comet probe to enter 'hibernation'

CU-Boulder to participate in NASA mission to land on an asteroid


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement