Space Travel News  
BIO FUEL
Incentives could turn costs of biofuel mandates into environmental benefits
by Staff Writers
Urbana IL (SPX) Apr 28, 2021

Miscanthus is harvested from a CABBI facility at Iowa State University. CABBI researchers from ISU and the University of Illinois Urbana-Champaign found the biofuel mandates of the Renewable Fuels Standard will lead to significant economic and environmental costs without targeted policies and incentives that value the sustainability benefits of perennial bioenergy crops like miscanthus over cheaper options.

New studies from the Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) shed more light on the economic and environmental costs of mandates in the Renewable Fuels Standard (RFS), a federal program to expand the nation's biofuels sector.

Researchers said the studies indicate the need to adopt more targeted policies that value the environmental and ecosystem benefits of perennial bioenergy crops over cheaper options - and provide financial incentives for farmers to grow them.

The RFS was issued in 2005 and updated through the Energy Independence and Security Act of 2007 to enhance U.S. energy security, reduce greenhouse gas (GHG) emissions, and promote rural development. The 2007 standards mandated blending 36 billion gallons of first-generation biofuels (made from food crops like corn, such as ethanol) and second-generation biofuels (made from the biomass of miscanthus or other energy feedstocks) with fossil fuels by 2022, to replace petroleum-based heating oil and fuel. The corn ethanol mandate has been met, with 15 billion gallons produced annually, but production of cellulosic biofuels has been negligible. Targets beyond 2022 are yet to be determined.

The biofuel mandates impact the environment in multiple ways - affecting land use, GHG emissions, nitrogen (N) application, and leakage of harmful nitrogen compounds into the soil, air, and water. Those impacts vary by feedstock, as do the economic costs and benefits for consumers buying food and fuel and for producers, depending on cultivation costs and the competition for cropland for alternative uses.

The first study calculated the net economic and environmental costs of the RFS mandates and found that maintaining the corn ethanol mandate would lead to a cumulative net cost to society of nearly $200 billion from 2016 to 2030 compared to having no RFS. The social cost of nitrogen damage from corn ethanol production substantially offsets the social benefits from GHG savings.

On the other hand, implementation of the additional cellulosic mandate could provide substantial economic and environmental benefits with technological innovations that lower the costs of converting biomass to cellulosic ethanol and policies that place a high monetized value for GHG mitigation benefits. That study, published in Environmental Research Letters, was led by CABBI Sustainability Theme Leader Madhu Khanna and Ph.D. student Luoye Chen from the University of Illinois Urbana-Champaign.

The second study examined how full implementation of the RFS mandates will affect water quality in the Mississippi/Atchafalaya River Basin (MARB) and Gulf of Mexico, which are plagued by nitrogen runoff from corn and soybean fields. Rising N levels have depleted oxygen and created a hypoxic dead zone in the gulf. Specifically, this study looked at whether diversifying cropland with perennial energy crops - such as CABBI grows - could reduce N loss associated with corn production and thus improve water quality while meeting RFS goals.

It found that the most economical place to grow perennial bioenergy crops, which typically require less nitrogen fertilizer and lower N runoff, was on idle cropland. This limited their potential to reduce N runoff, which would be highest if they replaced N-intensive row crops on cropland. The N reduction benefits of bioenergy crops would also be more than offset by the increase in runoff generated by the harvesting of low-cost crop residues such as corn stover - leaves and stalks of corn left after the grain is harvested - for cellulosic biomass.

The findings suggest that targeted incentives for reducing N loss are needed to persuade growers to replace N-intensive row crops as well as biomass from corn stover with bioenergy crops. Published in Environmental Science and Technology, the study was led by Associate Professor of Agronomy Andy VanLoocke and Ph.D. student Kelsie Ferin of Iowa State University.

Together, the studies showed that maintaining the corn ethanol mandate pushes more land into corn production, which increases the market price of other agricultural commodities. While producers might benefit from higher market prices, consumers who buy fuel or agricultural products pay the cost. And although the corn ethanol mandate can help mitigate GHG by displacing fossil fuels with biofuels, it increases nitrogen leaching because of increased fertilizer use with expanded corn production. That worsens water quality in the MARB and Gulf of Mexico and leads to a huge environmental and social cost.

In contrast, the cellulosic ethanol mandate could provide an overall benefit with the right policies. Supporting research and development to lower the cost of converting biomass to cellulosic ethanol would substantially reduce production costs and increase social benefits, and a high monetized value for GHG mitigation could offset all other costs.

These findings should lead policymakers to question the effectiveness of technology mandates like the RFS that treat all cellulosic feedstocks as identical. It incentivizes cheaper options like corn stover and limits incentives to grow high-yielding perennial energy crops that have lower carbon intensity and N-leakage but are more costly under current technology.

CABBI researchers hope performance-based policies - including the low carbon fuel standard, carbon and nitrogen leakage taxes, or limits on crop-residue harvest and N application - can be implemented to supplement the RFS mandates after 2022.

The complexity of biofuel policies requires expertise from both agronomists and economists, as in these studies. Both research teams developed integrated economic and biophysical models incorporating a broad range of factors into their analyses.

"CABBI provides a great opportunity for this kind of research, inspiring collaborations from different disciplines," Khanna said.

Research paper


Related Links
Urbana-Champaign Institute For Sustainability, Energy, And Environment
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Dominating fungus could be solution to producing more biofuels and chemicals
York UK (SPX) Apr 28, 2021
The discovery of a novel enzyme that releases a valuable chemical from agricultural waste could provide an important breakthrough in the upscaling of renewable fuels and chemicals, a new study shows. Researchers - led by the University of York - have discovered an enzyme in a fungus which can act as a catalyst to bring about a biochemical reaction that breaks down lignocellulose Lignocellulose is found in forestry and agricultural waste like wheat straw, which was used in this research. It h ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
BIO FUEL
Fourth flight postponed for Mars Ingenuity helicopter

NASA's Mars helicopter Ingenuity completes third successful flight

Seismicity on Mars full of surprises, in first continuous year of data

NASA's Mars helicopter's third flight goes farther, faster than before

BIO FUEL
The Hunt for the UK's Moon Trees

Elon Musk's SpaceX wins $2.9B contract to build lunar lander

China releases lunar sample data online

UAE to send rover to the Moon in 2022

BIO FUEL
New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered

BIO FUEL
NASA's Webb to study young exoplanets on the edge

When the atmosphere isn't enough

As different as day and night

Researchers identify five double star systems potentially suitable for life

BIO FUEL
Astronauts leave ISS, begin return journey to Earth on SpaceX craft

Arianespace Vega mission set to launch EO satellites

SpaceX Crew-2 astronauts enter International Space Station

SpaceX capsule Endeavour docks at ISS

BIO FUEL
China ready launch new space station core module

To Mars and beyond, as China's cosmic journey continues

China's space-tracking ship departs on new mission in Pacific

China Orbiting 400 Satellites, Heading for 1,000 by 2030, US Space Command Chief Says

BIO FUEL
Asteroid that Hit Botswana in 2018 likely came from Vesta

Scientists find CO2-rich liquid water in ancient meteorite

NASA to participate in tabletop exercise simulating asteroid impact

Hide and Seek - How NASA's Lucy Mission Team Discovered Eurybates' Satellite









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.