Subscribe free to our newsletters via your
. Space Travel News .




TECH SPACE
In probing mysteries of glass, researchers find a key to toughness
by Staff Writers
New Haven CT (SPX) Feb 28, 2013


Researchers said it's possible to categorize glasses in two groups - those that will be brittle because in liquid form their CFT is above the glass transition temperature, and those that will be ductile, because in liquid form their CFT is below the glass transition temperature.

In a paper published online in the journal Nature Communications, a Yale University team and collaborators propose a way of predicting whether a given glass will be brittle or ductile - a desirable property typically associated with metals like steel or aluminum - and assert that any glass could have either quality.

Ductility refers to a material's plasticity, or its ability to change shape without breaking.

"Most of us think of glasses as brittle, but our finding shows that any glass can be made ductile or brittle," said Jan Schroers, a professor of mechanical engineering and materials science at Yale, who led the research with Golden Kumar, a professor at Texas Tech University. "We identified a special temperature that tells you whether you form a ductile or brittle glass."

The key to forming a ductile glass, they said, is cooling it fast. Exactly how fast depends on the nature of the specific glass.

Focusing on a new group of glasses known as bulk metallic glasses (BMGs) - metal alloys, or blends, that can be extremely pliable yet also as strong as steel - researchers studied the effect of a so-called critical fictive temperature (CFT) on the glasses' mechanical properties at room temperature.

When forming from liquid, there is a temperature at which glass becomes too viscous for reconfiguration and freezes. This temperature is called the glass transition temperature. Based on experiments with three representative bulk metallic glasses, the researchers said there is also, for each distinct alloy, a critical temperature that determines the brittleness or plasticity of the glass. This is the CFT.

Researchers said it's possible to categorize glasses in two groups - those that will be brittle because in liquid form their CFT is above the glass transition temperature, and those that will be ductile, because in liquid form their CFT is below the glass transition temperature.

They previously thought a liquid's chemical composition alone would determine whether a glass would be brittle or ductile.

"That's not the case," Schroers said. "We can make any glass theoretically ductile or brittle. And it is the critical fictive temperature which determines how experimentally difficult it is to make a ductile glass. That is the major contribution of this work."

The finding applies theoretically to all glasses, not metallic glasses only, he said.

"A glass can have completely different properties depending on the rate at which you cool it," Schroers said. "If you cool it fast, it is very ductile, and if you cool it slow its very brittle. We anticipate that our finding will contribute to the design of ductile glasses, and in general contribute to a deeper understanding of glass formation."

The paper's lead author is Golden Kumar of Texas Tech University. Pascal Neibecker of the University of Augsburg in Germany and Yanhui Liu of Yale are co-authors.

.


Related Links
Yale University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Tungstenite triangles emit light
London, UK (SPX) Feb 28, 2013
Researchers in the US have succeeded in growing single atomic layers of the naturally occurring mineral tungstenite for the first time. The sheets appear to have unusual photoluminescence properties that might be exploited in optics devices like lasers and light-emitting diodes. 2D materials have dramatically different electronic and mechanical properties from their 3D counterparts and so ... read more


TECH SPACE
'Faulty Ukrainian Parts' Blamed for Zenit Launch Failure

The light-lift member of Arianespace's launcher family is readied for its second mission

SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

TECH SPACE
Lab Instruments Inside Curiosity Eat Mars Rock Powder

First-ever space tourist plans mission to Mars

Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

TECH SPACE
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

TECH SPACE
'Vulcan' wins Pluto moon name vote

Public to vote on names for Pluto moons

The PI's Perspective: The Seven-Year Itch

New Horizons Gets a New Year's Workout

TECH SPACE
Scientists spot birth of giant planet

NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

TECH SPACE
NASA Partner Orbital Tests Rocket, Newest US Launch Pad

NASA Seeks Big Ideas for Small In-Space Propulsion Systems

Start Me Up!

NASA Awards Final Space Launch System Advanced Booster Contract

TECH SPACE
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

TECH SPACE
Meteorite's Powerful Blast Due to Space Collisions

Asteroid impact mission targets Didymos

Asteroid impact mission targets Didymos

Apophis Risk Assessment Updated




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement