Subscribe free to our newsletters via your
. Space Travel News .




TECH SPACE
In chemical reactions, water adds speed without heat
by Staff Writers
Madison WI (SPX) May 23, 2012


Hydrogenation and hydrogenolysis reactions have huge applications in many key industrial sectors, including the petrochemical, pharmaceutical, food and agricultural industries.

An international team of researchers has discovered how adding trace amounts of water can tremendously speed up chemical reactions-such as hydrogenation and hydrogenolysis-in which hydrogen is one of the reactants, or starting materials.

Led by Manos Mavrikakis, the Paul A. Elfers professor of chemical and biological engineering at the University of Wisconsin-Madison, and Flemming Besenbacher, a professor of physics and astronomy at the University of Aarhus, Denmark, the team published its findings in the May 18 issue of the journal Science.

Hydrogenation and hydrogenolysis reactions have huge applications in many key industrial sectors, including the petrochemical, pharmaceutical, food and agricultural industries.

"In the petrochemical industry, for example, upgrading of oil to gasoline, and in making various biomass-derived products, you need to hydrogenate molecules-to add hydrogen-and all this happens through catalytic transformations," says Mavrikakis, who is among the top-100 chemists of the 2000-10 decade, according to Thomson Reuters.

A chemical reaction transforms a set of molecules (the reactants) into another set of molecules (the products), and a catalyst is a substance that accelerates that chemical reaction, while not itself being consumed in the process.

In industrial applications, the speed of catalytic transformations is important, says Mavrikakis. "The rate at which the hydrogen atoms diffuse on the surfaces of the catalyst determines, to a large extent, the rate of the chemical reaction-the rate at which we produce the products we want to produce," he says.

While many researchers have observed that water can accelerate chemical reactions in which hydrogen is a reactant or a product, until now, they lacked a fundamental grasp of how that effect was taking place, says Mavrikakis. "Nobody had appreciated the importance of water, even at the parts per million level," he says.

In their research, Mavrikakis and Besenbacher drew on their respective theoretical and experimental expertise to study metal oxides, a class of materials often used as catalysts or catalyst supports. They found that the presence of even the most minute amounts of water-on the order of those in an outer-space vacuum-can accelerate the diffusion of hydrogen atoms on iron oxide by 16 orders of magnitude at room temperature.

In other words, water makes hydrogen diffuse 10,000 trillion times faster on metal oxides than it would have diffused in the absence of water. Without water, heat is needed to speed up that motion.

Besenbacher and his colleagues have one of the world's fastest scanning tunneling microscopes, which has atomic-scale resolution. With it, they could see how quickly hydrogen atoms diffused across iron oxide in the presence of water.

To explain the fundamental mechanisms of how that happened, Mavrikakis and his team used quantum mechanics, a branch of physics that explains the behavior of matter on the atomic scale; and massively parallel computing.

Essentially, when water is present, hydrogen diffuses via a proton transfer, or proton "hopping," mechanism, in which hydrogen atoms from the oxide surface jump onto nearby water molecules and make hydronium ions, which then deliver their extra proton to the oxide surface and liberate a water molecule. That repeated process leads to rapid hydrogen atom diffusion on the oxide surface.

It's a process that doesn't happen willy-nilly, either. The researchers also showed that when they roll out the proverbial red carpet-a nanoscale "path" templated with hydrogen atoms-on iron oxide, the water will find that path, stay on it, and keep moving. The discovery could be relevant in nanoscale precision applications mediated by water, such as nanofluidics, nanotube sensors, and transfer across biological membranes, among others.

The U.S. Department of Energy Office of Basic Energy Sciences funded the UW-Madison research. Other UW-Madison authors on the Science paper include chemical and biological engineering research scientist Guowen Peng, PhD student Carrie Farberow, and PhD alumnus Lars Grabow (now an assistant professor at the University of Houston). Other authors include Lindsay Merte, Ralf Bechstein, Felix Rieboldt, Wilhelmine Kudernatsch, Stefan Wendt and Erik Laegsgaard of Aarhus University.

.


Related Links
University of Wisconsin-Madison
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
From Lemons to Lemonade: Reaction Uses CO2 to Make Carbon-Based Semiconductor
Houghton, MI (SPX) May 23, 2012
A materials scientist at Michigan Technological University has discovered a chemical reaction that not only eats up the greenhouse gas carbon dioxide, it also creates something useful. And, by the way, it releases energy. Making carbon-based products from CO2 is nothing new, but carbon dioxide molecules are so stable that those reactions usually take up a lot of energy. If that energy were ... read more


TECH SPACE
SpaceX blasts off to space station in historic first

What Went Up Can Now Come Down With SpaceX Demo Flight

SpaceX capsule completes first tests before ISS docking

SpaceX readies new attempt of rocket launch to space lab

TECH SPACE
NASA Goddard Delivers Magnetometers for NASA's Next Mission to Mars

To the Highlands of Mars

Opportunity Rolling Again After Fifth Mars Winter

Mojave Desert Tests Prepare for NASA Mars Roving

TECH SPACE
Perigee "Super Moon" On May 5-6

India's second moon mission Chandrayaan-2 to wait

European Google Lunar X Prize Teams Call For Science Payloads

Russia to Send Manned Mission to Moon by 2030

TECH SPACE
Beyond Pluto And Exploring the Kuiper Belt

Uranus auroras glimpsed from Earth

Herschel images extrasolar analogue of the Kuiper Belt

New Horizons on Approach: 22 AU Down, Just 10 to Go

TECH SPACE
Newfound exoplanet may turn to dust

Cosmic dust rings no guarantee of planets

In search of new 'Earths' beyond our Solar System

Free-floating planets in the Milky Way outnumber stars by factors of thousands

TECH SPACE
Pictures show N. Korea rocket launch upgrade

Internet entrepreneur hits paydirt in space, autos

NASA Team to Test New Vehicle-Descent Technologies

Robotic Refueling Mission Results To Be Presented At NASA Satellite-Servicing Workshop

TECH SPACE
When Will Shenzhou 9 Be Launched

China's space women wait for blast-off

Shenzhou 9 to be ready for mid-June launch?

China confirms plans to build own orbital station

TECH SPACE
NASA Survey Counts Potentially Hazardous Asteroids

NASA Dawn Spacecraft Reveals Secrets of Large Asteroid

NASA trains astronauts to land on asteroid

Amateur astronomers boost ESA's asteroid hunt




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement