Space Travel News  
NANO TECH
Imaging Tool May Aid Nanoelectronics By Screening Tiny Tubes

Single-wall nanotubes are formed by rolling up a one-atom-thick layer of graphite called graphene, which could eventually rival silicon as a basis for computer chips.
by Staff Writers
West Lafayette IN (SPX) Nov 23, 2010
Researchers have demonstrated a new imaging tool for rapidly screening structures called single-wall carbon nanotubes, possibly hastening their use in creating a new class of computers and electronics that are faster and consume less power than today's.

The semiconducting nanostructures might be used to revolutionize electronics by replacing conventional silicon components and circuits. However, one obstacle in their application is that metallic versions form unavoidably during the manufacturing process, contaminating the semiconducting nanotubes.

Now researchers have discovered that an advanced imaging technology could solve this problem, said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry at Purdue University.

"The imaging system uses a pulsing laser to deposit energy into the nanotubes, pumping the nanotubes from a ground state to an excited state," he said. "Then, another laser called a probe senses the excited nanotubes and reveals the contrast between metallic and semiconductor tubes."

The technique, called transient absorption, measures the "metallicity" of the tubes. The detection method might be combined with another laser to zap the unwanted metallic nanotubes as they roll off of the manufacturing line, leaving only the semiconducting tubes.

Findings are detailed in a research paper appearing online this week in the journal Physical Review Letters.

Single-wall nanotubes are formed by rolling up a one-atom-thick layer of graphite called graphene, which could eventually rival silicon as a basis for computer chips. Researchers in Cheng's group, working with nanomaterials for biomedical studies, were puzzled when they noticed the metallic nanoparticles and semiconducting nanowires transmitted and absorbed light differently after being exposed to the pulsing laser.

Then researcher Chen Yang, a Purdue assistant professor of physical chemistry, suggested the method might be used to screen the nanotubes for nanoelectronics.

"When you make nanocircuits, you only want the semiconducting ones, so it's very important to have a method to identify the metallic nanotubes," Yang said.

The paper was written by Purdue physics doctoral student Yookyung Jung; biomedical engineering research scientist Mikhail N. Slipchenko; Chang-Hua Liu, an electrical engineering graduate student at the University of Michigan; Alexander E. Ribbe, manager of the Nanotechnology Group in Purdue's Department of Chemistry; Zhaohui Zhong, an assistant professor of electrical engineering and computer science at Michigan; and Yang and Cheng. The Michigan researchers produced the nanotubes.

Semiconductors such as silicon conduct electricity under some conditions but not others, making them ideal for controlling electrical current in devices such as transistors and diodes.

The nanotubes have a diameter of about 1 nanometer, or roughly the length of 10 hydrogen atoms strung together, making them far too small to be seen with a conventional light microscope.

"They can be seen with an atomic force microscope, but this only tells you the morphology and surface features, not the metallic state of the nanotube," Cheng said.

The transient absorption imaging technique represents the only rapid method for telling the difference between the two types of nanotubes. The technique is "label free," meaning it does not require that the nanotubes be marked with dyes, making it potentially practical for manufacturing, he said.

The researchers performed the technique with nanotubes placed on a glass surface. Future work will focus on performing the imaging when nanotubes are on a silicon surface to determine how well it would work in industrial applications.

"We have begun this work on a silicon substrate, and preliminary results are very good," Cheng said.

Future research also may study how electrons travel inside individual nanotubes.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Purdue University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
Nanoscale Probe Reveals Interactions Between Surfaces And Single Molecules
Los Angeles CA (SPX) Nov 18, 2010
As electronics become smaller and smaller the need to understand nanoscale phenomena becomes greater and greater. Because materials exhibit different properties at the nanoscale than they do at larger scales, new techniques are required to understand and to exploit these new phenomena. A team of researchers led by Paul Weiss, UCLA's Fred Kavli Chair in NanoSystems Sciences, has developed a ... read more







NANO TECH
45th Space Wing Launches NRO Satellite

Ball Aerospace STPSat-2 Satellite Launches Aboard STP-S26 Mission

Resourcesat-2 Satellite Launch In January

Ukraine Delivers Taurus II Launch Vehicle's First Stage To US

NANO TECH
Russia To Launch Unmanned Lander To Martian Moon In October 2011

NASA Mars Rover Images Honor Apollo 12

Russia To Launch Unmanned Lander To Martian Moon In October 2011

Leicester Scientists Involved In Development Of New Breed Of Space Vehicle

NANO TECH
Mining On The Moon Is A Not-So-Distant Possibility

A Softer Landing on the Moon

New Analysis Explains Formation Of Lunar Farside Bulge

New type of moon rock identified

NANO TECH
Kuiper Belt Of Many Colors

Reaching The Mid-Mission Milestone On The Way To Pluto

New Horizons Student Dust Counter Instrument Breaks Distance Record

Nitrogen Methane Dominate Icy Surface Of Eris

NANO TECH
Planet From Another Galaxy Discovered

First glimpse of a planet from another galaxy

Eartly Dust Tails Point To Alien Worlds

U.K. astronomers see 'snooker' star system

NANO TECH
DARPA Concludes Review Of Falcon HTV-2 Flight Anomaly

NASA Test Fires New Rocket Engine for Commercial Space Vehicle

Rocketdyne To Perform Risk-Reduction Tests On 3GRB Engine

SpaceShipTwo designer Rutan retiring

NANO TECH
China To Launch First Female Astronauts

Two Telescopes For Tiangong

Chinese Female Taikonaut Identified

Tiangong Space Lab Spurs China Space PR Blitz

NANO TECH
Hayabusa's Harvest

Comet Snowstorm Engulfs Hartley 2

Japan confirms space probe brought home asteroid dust

Hayabusa Spacecraft Returns Asteroid Artifacts From Space


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement