Space Travel News  
SATURN DAILY
Huge Collision May Have Formed Saturn's Rings And Inner Moons

At the end of the formation of Saturn's satellites, a Titan-sized satellite spirals inward toward the planet due to interaction with the primordial circumplanetary gas disk. As the satellite approaches the planet's surface, planetary tides strip material from its outer icy layers, producing material that eventually forms a massive ice ring. Image courtesy of Southwest Research Institute
by Staff Writers
San Antonio TX (SPX) Dec 13, 2010
Simulations performed at Southwest Research Institute may explain how Saturn's majestic rings and icy inner moons formed following the collision of a Titan-sized satellite with the planet, according to a paper published in Nature magazine's Advance Online Publication.

Saturn's rings are at present 90 to 95 percent water ice. Because dust and debris from rocky meteoroids have polluted the rings, the rings are believed to have consisted of pure ice when they formed.

This composition is unusual compared to the approximately half-ice and half-rock mixture expected for materials in the outer Solar System. Similarly, the low densities of Saturn's inner moons show that they too are, as a group, unusually rich in ice.

The previous leading ring origin theory suggests the rings formed when a small satellite was disrupted by an impacting comet. "This scenario would have likely resulted in rings that were a mixture of rock and ice, rather than the ice-rich rings we see today," says the paper's author, Dr. Robin M. Canup, associate vice president of the SwRI Planetary Science Directorate in Boulder, Colorado.

The new theory links the formation of the rings to the formation of Saturn's satellites. While Jupiter has four large satellites, Saturn has only one, Titan.

Previous work suggests that multiple Titan-sized satellites originally formed at Saturn, but that those orbiting interior to Titan were lost as their orbits spiraled into the planet.

As the final lost satellite neared Saturn, heating caused by the flexing of its shape by the planet's gravity would cause its ice to melt and its rock to sink to its center.

Canup uses numerical simulations to show that as such a satellite crosses the region of the current B ring, planetary tidal forces strip material from its outer icy layers, while its rocky core remains intact and eventually collides with the planet. This produces an initial ice ring that is much more massive than Saturn's current rings.

Over time, collisions in the ring cause it to spread radially and decrease in mass. Inwardly spreading ring material is lost, while material spreading past the ring's outer edge accumulates into icy moons with estimated masses consistent with the inner moons seen today.

"The new model proposes that the rings are primordial, formed from the same events that left Titan as Saturn's sole large satellite, " says Canup. "The implication is that the rings and the Saturnian moons interior to and including Tethys share a coupled origin, and are the last remnants of a lost companion satellite to Titan."

During its extended mission, the Cassini spacecraft will measure the rings' current mass and will indirectly measure the pollution rate of the rings. This should provide an improved estimate of the rings' age and a test of the new ring origin model.

NASA's Outer Planets Research Program funded this research. The paper, "Origin of Saturn's Rings and Inner Moons by Mass Removal from a Lost Titan-Sized Satellite," by Dr. R.M. Canup, was published in Nature magazine's Dec. 12 Advance Online Publication.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Southwest Research Institute
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


SATURN DAILY
Oxygen detected on Saturn moon
Pasadena, Calif. (UPI) Nov 26, 2010
NASA's Cassini space probe orbiting Saturn has found evidence of an atmosphere on Rhea, one of the ringed planet's moons, U.S. researchers say. The spacecraft has detected a very thin atmosphere containing oxygen and carbon dioxide around the icy moon, a NASA release said Friday. This marks the first instance of a spacecraft directly capturing molecules of an oxygen atmosphere -- ... read more







SATURN DAILY
The Flight Of The Dragon

ISRO To Launch New Satellite On December 20

SpaceX Dragon Does Two Orbits Before Pacific Splashdown

NASA, SpaceX giddy over historic orbit launch

SATURN DAILY
Wind And Water Have Shaped Schiaparelli On Mars

The Three Ages Of Mars

Odyssey Orbiter Nears Martian Longevity Record

Drilling For The Future Of Science

SATURN DAILY
Robotic Excavations Could Help Get Helium 3 From Moon To Earth

A Softer Landing on the Moon

Neptec Wins Canadian Space Agency Contract To Develop A New Generation Of Lunar Rovers

Mission to far side of moon proposed

SATURN DAILY
Kuiper Belt Of Many Colors

Reaching The Mid-Mission Milestone On The Way To Pluto

New Horizons Student Dust Counter Instrument Breaks Distance Record

Nitrogen Methane Dominate Icy Surface Of Eris

SATURN DAILY
NASA Scientists Theorize Final Growth Spurt For Planets

New Pictures Show Fourth Planet In Giant Version Of Our Solar System

Carbon-Rich Planet: A Girl's Best Friend

Astronomers Detect First Carbon-Rich Exoplanet

SATURN DAILY
Brazil launches rocket into suborbit

Fueling error blamed in loss of satellites

New JPL Workers Shed Training Wheels For Rocket Launch

Russia probes navigation system spending after crash

SATURN DAILY
China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

Optis Software To Optimize Chinese Satellite Design

SATURN DAILY
Research Points To Better Understanding Of Carbon In Comets

MegaPhase RF Cables Enable Conclusion Of Seven-Year Deep Space Program

Study: Earth's precious metals from space

Dawn On A Smooth And Steady Course


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement