Space Travel News  
TIME AND SPACE
How to observe a 'black hole symphony' using gravitational wave astronomy
by Staff Writers
Nashville TN (SPX) Nov 19, 2019

A snapshot of the 3D gravitational waveform from a general relativistic simulation of binary black holes. Gravitational waves from such binary mergers are routinely observed by LIGO. With space missions such as LISA, the evolution of these binaries can be monitored years in advance, allowing multi-frequency constraints on astrophysical formations and tests of general relativity.

Shrouded in mystery since their discovery, the phenomenon of black holes continues to be one of the most mind-boggling enigmas in our universe.

In recent years, many researchers have made strides in understanding black holes using observational astronomy and an emerging field known as gravitational wave astronomy, first hypothesized by Albert Einstein, which directly measures the gravitational waves emitted by black holes.

Through these findings on black hole gravitational waves, which were first observed in 2015 by the Laser Interferometer Gravitational-Wave Observatories (LIGO) in Louisiana and Washington, researchers have learned exciting details about these invisible objects and developed theories and projections on everything from their sizes to their physical properties.

Still, limitations in LIGO and other observation technologies have kept scientists from grasping a more complete picture of black holes, and one of the largest gaps in knowledge concerns a certain type of black hole: those of intermediate-mass, or black holes that fall somewhere between supermassive (at least a million times greater than our sun) and stellar (think: smaller, though still 5 to 50 times greater than the mass of our sun).

That could soon change thanks to new research out of Vanderbilt on what's next for gravitational wave astronomy. The study, led by Vanderbilt astrophysicist Karan Jani and featured as a letter in Nature Astronomy, presents a compelling roadmap for capturing 4- to 10-year snapshots of intermediate-mass black hole activity.

"Like a symphony orchestra emits sound across an array of frequencies, the gravitational waves emitted by black holes occur at different frequencies and times," said Jani. "Some of these frequencies are extremely high-bandwidth, while some are low-bandwidth, and our goal in the next era of gravitational wave astronomy is to capture multiband observations of both of these frequencies in order to 'hear the entire song,' as it were, when it comes to black holes."

Jani, a self-proclaimed "black hole hunter" who Forbes named to its 2017 30 Under 30 list in Science, was part of the team that detected the very first gravitational waves. He joined Vanderbilt as a GRAVITY postdoctoral fellow in 2019.

Along with collaborators at Georgia Institute of Technology, California Institute of Technology and the Jet Propulsion Laboratory at NASA, the new paper, "Detectability of Intermediate-Mass Black Holes in Multiband Gravitational Wave Astronomy," looks at the future of LIGO detectors alongside the proposed Laser Interferometer Space Antenna (LISA) space-mission, which would help humans get a step closer to understanding what happens in and around black holes.

"The possibility that intermediate mass black holes exist but are currently hidden from our view is both tantalizing and frustrating," said Deidre Shoemaker, co-author of the paper and professor in Georgia Tech's School of Physics. "Fortunately, there is hope as these black holes are ideal sources for future multiband gravitational wave astronomy."

LISA, a mission jointly led by the European Space Agency and NASA and planned for launch in the year 2034, would improve detection sensitivity for low-frequency gravitational waves. As the first dedicated space-based gravitational wave detector, LISA would provide a critical measurement of a previously unattainable frequency and enable the more complete observation of intermediate-mass black holes. In 2018, Vanderbilt physics and astronomy professor Kelly Holley-Bockelmann was appointed by NASA as the inaugural chair of the LISA Study Team.

"Inside black holes, all known understanding of our universe breaks down," added Jani. "With the high frequency already being captured by LIGO detectors and the low frequency from future detectors and the LISA mission, we can bring these data points together to help fill in many gaps in our understanding of black holes."

Research paper


Related Links
Vanderbilt University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Black hole mergers: Cooking with gas
New York NY (SPX) Nov 14, 2019
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week. If these mergers occur in empty space, researchers cannot see associated light that is needed to determine where they happened. However, a new study in The Astrophysical Journal Letters, led by scientists at the American Museum of Natural History and the City University of New York (CUNY), suggests that researchers might finally be able to see light from black hole mergers if the collisions happen in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
TIME AND SPACE
China completes Mars lander test ahead of 2020 mission

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

ESA's Mars orbiters did not see latest Curiosity methane burst

With Mars methane mystery unsolved, Curiosity serves scientists a new one: oxygen

TIME AND SPACE
India aims for next Moon landing attempt by November 2020

India's 'failed' Moon mission still active, sends 3D images of lunar surface

NASA gains broad international support for Artemis Program at IAC

Lunar IceCube mission to locate, study resources needed for sustained presence on Moon

TIME AND SPACE
NASA finds Neptune moons locked in 'Dance of Avoidance'

New Horizons Kuiper Belt Flyby object officially named 'Arrokoth'

NASA renames faraway ice world 'Arrokoth' after backlash

Juice cast in gold

TIME AND SPACE
Making planets in a rocket

Distant worlds under many suns

Study refines which exoplanets are potentially habitable

Life on Venus and the interplanetary transfer of biota from Earth

TIME AND SPACE
SpaceX Completes Crew Dragon Static Fire Tests

SpaceX Crew Dragon releases photos of emergency escape engines test

Arianespace will orbit TIBA-1 and Inmarsat GX5 with Ariane 5

Thruster for next-generation spacecraft undergoes testing at Glenn

TIME AND SPACE
China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

TIME AND SPACE
Campaign launched to support Hera asteroid mission

The voyage home: Japan's Hayabusa-2 probe to head for Earth

China to meet challenges of exploring asteroid, comet

Apollo astronaut champions Hera for planetary defence









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.