Space Travel News  
UAV NEWS
How to keep drones flying when a motor fails
by Staff Writers
Zurich, Switzerland (SPX) Feb 24, 2021

When one rotor fails, the drone begins to spin on itself like a ballerina. (Image: UZH)

As anxious passengers are often reassured, commercial aircrafts can easily continue to fly even if one of the engines stops working. But for drones with four propellers - also known as quadcopters - the failure of one motor is a bigger problem. With only three rotors working, the drone loses stability and inevitably crashes unless an emergency control strategy sets in.

Researchers at the University of Zurich and the Delft University of Technology have now found a solution to this problem: They show that information from onboard cameras can be used to stabilize the drone and keep it flying autonomously after one rotor suddenly gives out.

"When one rotor fails, the drone begins to spin on itself like a ballerina," explains Davide Scaramuzza, head of the Robotics and Perception Group at UZH and of the Rescue Robotics grand challenge at NCCR Robotics, which funded the research.

"This high-speed rotational motion causes standard controllers to fail unless the drone has access to very accurate position measurements." In other words, once it starts spinning, the drone is no longer able to estimate its position in space and eventually crashes.

One way to solve this problem is to provide the drone with a reference position through GPS. But there are many places where GPS signals are unavailable. In their study, the researchers solved this issue for the first time without relying on GPS, instead using visual information from different types of onboard cameras.

Event cameras work well in low light
The researchers equipped their quadcopters with two types of cameras: standard ones, which record images several times per second at a fixed rate, and event cameras, which are based on independent pixels that are only activated when they detect a change in the light that reaches them.

The research team developed algorithms that combine information from the two sensors and use it to track the quadrotor's position relative to its surroundings. This enables the onboard computer to control the drone as it flies - and spins - with only three rotors.

The researchers found that both types of cameras perform well in normal light conditions. "When illumination decreases, however, standard cameras begin to experience motion blur that ultimately disorients the drone and crashes it, whereas event cameras also work well in very low light," says first author Sihao Sun, a postdoc in Scaramuzza's lab.

Increased safety to avoid accidents
The problem addressed by this study is a relevant one, because quadcopters are becoming widespread and rotor failure may cause accidents. The researchers believe that this work can improve quadrotor flight safety in all areas where GPS signal is weak or absent.

Research Report: Autonomous Quadrotor Flight despite Rotor Failure with Onboard Vision Sensors: Frames vs. Events


Related Links
University Of Zurich
UAV News - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


UAV NEWS
Commercial 1-ton cargo delivery glider to be scaled down for expanded military operations
Los Angeles CA (SPX) Feb 17, 2021
Silent Arrow reports that the US Air Force has awarded contract FA864921P0478 entitled "Feasibility of Downsizing and Adapting Commercial Silent Arrow Cargo Delivery UAS to Meet Specific AFSOC Operational Requirements" to the company effective February 5, 2021. The contract will be executed in partnership with the Air Force Research Laboratory (AFRL) with funding from AFWERX. Under this Small Business Innovation Research ("SBIR") contract, the commercially successful Silent Arrow GD-2000 (Glider, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

UAV NEWS
UAV NEWS
Mars rover mission could drive research for decades to come

Perseverance hits 'bullseye' on Mars landing

Skoltech's recent achievement takes us one step closer to Mars

'7 minutes of terror': Perserverance rover's nail-biting landing phase

UAV NEWS
How to Get Water on the Moon

Teaching an Old Spacecraft New Tricks to Continue Exploring the Moon

NASA awards contract to launch initial elements for lunar outpost

Goddard's Core Flight Software Chosen for NASA's Lunar Gateway

UAV NEWS
Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth

UAV NEWS
On the quest for other Earths

NASA's TESS discovers new worlds in a river of young stars

Lasers reveal the secret interior of rocky exoplanets

A new way of forming planets

UAV NEWS
Russia plans at least 10 launches from Baikonur in 2021

DLR ready to test first upper stage for Ariane 6

NASA assigns astronauts to next SpaceX Crew-4 mission to ISS

Kremlin 'interested' in Elon Musk-Putin conversation

UAV NEWS
Chinese tracking vessel sets sail for monitoring missions in Indian Ocean

China's 'space dream': A Long March to the Moon and beyond

Three generations dedicated to space program

China's space station core module, cargo craft pass factory review

UAV NEWS
The comet that killed the dinosaurs

Ceramic chips inside meteorites hint at wild days of the early solar system

What Hollywood gets wrong, and right, about asteroids

NASA's OSIRIS-REx to Fly a Farewell Tour of Bennu









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.