Space Travel News  
FLORA AND FAUNA
How insects decide to grow up
by Staff Writers
Riverside CA (SPX) Jan 27, 2017


Image of a maggot (left); the steroid producing cells with the maggot brain (middle); and an expanded image of the steroid producing cells (right). Note large nuclei (dense white area) of steroid producing cells, which are labeled with a green fluorescent marker. Image courtesy UC Riverside.

Like humans, insects go through puberty. The process is known as metamorphosis. Examples include caterpillars turning into butterflies and maggots turning into flies.

But, it has been a long-standing mystery as to what internal mechanisms control how insects go through metamorphosis and why it is irreversible.

Now, a team of scientists, led by an assistant professor at the University of California, Riverside, has solved the mystery. They also believe the findings, which were just published in an early version in the journal PLOS Genetics, could be applied to mammals, including humans. The final version of the paper will be published Feb. 8.

Using the model organism fruit flies, the researchers found that the amount of DNA in the fruit fly controls the initial production of steroid hormones, which signal the start of metamorphosis.

More specifically, the cells that produce steroid hormones keep duplicating their DNA without cell division, making their nuclei huge. The team found that this amount of DNA in steroid hormone-producing cells is a critical indicator of their juvenile development, and it even determines when the insects get into metamorphosis.

Naoki Yamanaka, an assistant professor of entomology at UC Riverside, likened the accumulation of DNA to rings found inside trees that are used to date trees.

"The amount of DNA is like an internal timer for insect development," Yamanaka said. "It tells the insect, 'OK, I will grow up now.'"

Their finding explains, for the first time, why insect metamorphosis, just like human puberty, is an irreversible process. It is irreversible since DNA duplication cannot be reversed in cells. Once the cells increase the amount of DNA and start producing steroid hormones, that is the point of no return; they cannot go back to their childhood.

The findings could have multiple applications. In the short term, they could be used to help control agricultural pests by manipulating their steroid signaling pathways. They could also be used to aid beneficial insects, such as bees.

In the long term, the findings could also be used to develop better ways to treat diseases in humans related to sexual maturation, since human puberty is also controlled by steroid hormones, just like insects. The results may also aide future studies on steroid-related diseases such as breast cancer, prostate cancer, and menopause-related symptoms.

Yamanaka will continue this research by focusing on other insects, such as bumblebees and mosquitos, to see if they have a similar internal timer.

Research paper: "Nutrient-Dependent Endocycling in Steroidogenic Tissue Dictates Timing of Metamorphosis in Drosophila melanogaster."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Riverside
Darwin Today At TerraDaily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FLORA AND FAUNA
Moving up the food chain can beat being on top
Houston TX (SPX) Jan 18, 2017
When it comes to predators, the biggest mouths may not take the biggest bite. According to a new study from bioscientists at Rice University, some predators have their greatest ecological impacts before they reach adulthood. "We live in a world where humans are impacting species at different stages of their lives, and this work shows the importance of considering the entire life cycle of a ... read more


FLORA AND FAUNA
FLORA AND FAUNA
Microbes could survive thin air of Mars

Mars rover Opportunity takes a drive up a steep slope

Mars Rover Curiosity Examines Possible Mud Cracks

Opportunity Continues Its Journey South Along Crater Rim

FLORA AND FAUNA
The science behind the Lunar Hydrogen Polar Mapper mission

Eugene Cernan, last man to walk on moon, dead at 82

The moon is older than scientists thought

New map of the Moon under creation in China

FLORA AND FAUNA
Public to Choose Jupiter Picture Sites for NASA Juno

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope

Flying observatory makes observations of Jupiter previously only possible from space

FLORA AND FAUNA
SF State astronomer searches for signs of life on Wolf 1061 exoplanet

Looking for life in all the right places with the right tool

Could dark streaks in Venusian clouds be microbial life

VLT to Search for Planets in Alpha Centauri System

FLORA AND FAUNA
When One launch is not enough: SpaceX Return To Flight

Ruptured oxidant tank likely cause of Progress accident

2017 Rocket Campaign Begins in Alaska

Next Cygnus Mission to Station Set for March

FLORA AND FAUNA
China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

FLORA AND FAUNA
Observations of Ceres indicate that asteroids might be camouflaged

How the darkness and the cold killed the dinosaurs

Successful Deep Space Maneuver for NASA's OSIRIS-REx Spacecraft

NASA's Newly Announced Mission Could Solve the Mystery of Water on Asteroid Psyche









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.