Subscribe free to our newsletters via your
. Space Travel News .




FARM NEWS
How does your garden grow?
by Staff Writers
Cambridge, UK (SPX) Aug 23, 2013


Corn grown in coal waste is shown above corn grown in coal waste with added biofertiliser. Credit: Peter Leggo.

Food and biofuel crops could be grown and maintained in many places where it wasn't previously possible, such as deserts, landfills and former mining sites, thanks to an inexpensive, non-chemical soil additive.

The additive, a simple mixture of organic waste, such as chicken manure, and zeolite, a porous volcanic rock, could be used to support agriculture in both the developed and developing world, while avoiding the serious environmental consequences associated with the overuse of chemical fertilisers. The mixture permits a controlled release of nutrients, the regulation of water, and an ideal environment for growing crops.

Researchers from the University of Cambridge have demonstrated that with the addition of the biofertiliser, biofuel crops can be successfully grown and - more importantly, sustained - even on coal waste highly contaminated with metal residues.

Using coal waste from the site of a former colliery in Nottinghamshire as a substrate, the researchers grew rapeseed, flax, sugar beet and maize, with different additives: manure, zeolite, lime, or biofertiliser, as well as coal waste alone and regular garden soil.

Plants grown in the coal waste with added biofertiliser achieved nearly twice the weight and yield of those grown in garden soil or in coal waste with added manure, and more than twice the weight and yield of those grown in coal waste with added zeolite. The results are published in the August issue of the International Journal of Environment and Resource.

The coal waste contains chemical elements that can be ionised by the biofertiliser, making nutrients which are essential to growth available for uptake by the plants. As the organic waste in the mixture decomposes, it produces ammonium ions which build up on the surface of the zeolite.

When the mixture is added to soil, it boosts the population of micro-organisms responsible for nitrification, which is essential for plant nutrition. The biofertiliser also helps plants develop dense root systems which stabilise the soil against erosion.

In addition to the coal waste, the team is working with marginal soils, such as those in desert climates, which normally require large amounts of water and chemical fertilisers in order for plants to grow. Control experiments have shown that water held in the zeolite increases the moisture content of soil in desert conditions. After initial watering, early-morning dew is held in the pores of the zeolite and released during the hottest part of the day. Plants grown with the biofertiliser achieve greater weight, and in the case of fruits and vegetables, a better taste, than those grown with chemical fertilisers.

Nitrogen is critical for crop development, yet is deficient in many types of soil. Over the past century, chemical fertilisers have been used to boost nitrogen levels and crop yields, helping global food supply keep pace with population growth. However, this has come at a cost as they are detrimental to long-term soil health.

Without a regular input of organic matter, soil microbial diversity decreases and the carbon concentration is lowered. The overuse of chemical fertilisers causes the soil to lose both its ability to hold water and its overall structure, leading to greater runoff and groundwater pollution. Nitrogen-rich fertiliser runoff is the primary cause of oxygen depletion in oceans, lakes and rivers, leading to aquatic 'dead zones.'

"This is a whole new approach to plant nutrition," says Dr Peter Leggo of the Department of Earth Sciences, who developed the material. "Previously, you'd douse crops with chemicals, and it's caused a huge reduction in soil microbial diversity. It has reached the stage that in certain parts of North America enormous dust bowls have developed as a consequence. The material we've developed takes less energy to produce, improves soil structure and enables you to grow crops on almost any type of soil."

The team has plans to commercialise the material where there are large deposits of zeolite, and export it to other markets. There are also plans to collaborate with charities and social enterprises to create sustainable farmland for small hold farmers in the developing world.

.


Related Links
University of Cambridge
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
Ancient cycads found to be pre-adapted to grow in groves
Washington DC (SPX) Aug 22, 2013
The ancient cycad lineage has been around since before the age of the dinosaurs. More recently, cycads also co-existed with large herbivorous mammals, such as the ice age megafauna that only went extinct a few tens of thousands of years ago. Cycads that are living today have large, heavy seeds with a fleshy outer coating that suggests they rely on large bodied fruit-eating animals to disperse th ... read more


FARM NEWS
NASA Explores New Uses for Historic Launch Structures

Telemetry data confirms launch of South Korean satellite

ISRO pins hopes on GSLV-D5

Lockheed Martin Selects CubeSat Integrators for Athena to Enhance Launch Systems Integration

FARM NEWS
International Space Agencies Outline Steps to Take Humans to Mars

Snapping Pictures of the Martian Moons

Mars Rover Opportunity Working at Edge of 'Solander'

MRO Swapping Motion-Sensing Units

FARM NEWS
NASA Prepares for First Virginia Coast Launch to Moon

NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

FARM NEWS
Pluto Science Conference Exceeds Expectations

SciTechTalk: Grab your erasers, there are more moons than we thought

NASA Hubble Finds New Neptune Moon

NASA finds new moon on Neptune

FARM NEWS
Study: Planets might be 'born free' without a parent star

Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

FARM NEWS
Flights of Fancy

NASA Partner Completes Second Dream Chaser Captive-Carry Test

Japan space agency unveils new rocket Epsilon

ISRO may use standy engine to launch GSLV

FARM NEWS
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

FARM NEWS
High-speed tests demonstrate space penetrator concept

Sleeping spacecraft to be awakened for new asteroid hunts

Radar Images of Asteroid 2005 WK4

Researchers identify 12 'easy' candidates for asteroid mining




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement