Space Travel News  
ABOUT US
How brain architecture leads to abstract thought
by Staff Writers
Amherst MA (SPX) Dec 19, 2015


Hava Siegelmann believes her recent use of a geometry-based approach to massive data analysis, which offers a new understanding of how thought arises in the brain, paves the way for advances in identifying and treating brain disease, and in deep learning artificial intelligence systems. Image courtesy UMass Amherst.

Using 20 years of functional magnetic resonance imaging (fMRI) data from tens of thousands of brain imaging experiments, computational neuroscientists Hava Siegelmann and a postdoctoral colleague at the University of Massachusetts have created a geometry-based method for massive data analysis to reach a new understanding of how thought arises from brain structure.

The authors say their work paves the way for advances in the identification and treatment of brain disease, as well as in deep learning artificial intelligence (AI) systems. Details appear in the current issue of Nature Scientific Reports.

As Siegelmann explains, fMRI detects changes in neural blood flow allowing researchers to relate brain activity with a cognitive behavior such as talking.

She says, "The fMRI-based research did a wonderful job relating specific brain areas with activities. But no one ever tied together the tens of thousands of experiments performed over decades to show how the physical brain could give rise to abstract thought."

She and colleagues found that cognitive function and abstract thought exist as an agglomeration of many cortical sources ranging from those close to sensory cortices to far deeper from them along the brain connectome, or connection wiring diagram.

Siegelmann is director of the Biologically Inspired Neural and Dynamical Systems Laboratory at UMass Amherst and one of 16 recipients in 2015 of the National Science Foundation's (NSF) Brain Research through Advancing Innovative Neurotechnologies (BRAIN) program initiated by President Obama to advance understanding of the brain.

The authors say their work demonstrates not only the basic operational paradigm of cognition, but shows that all cognitive behaviors exist on a hierarchy, starting with the most tangible behaviors such as finger tapping or pain, then to consciousness and extending to the most abstract thoughts and activities such as naming. This hierarchy of abstraction is related to the connectome structure of the whole human brain, they add.

For this study, the researchers took a data-science approach. They first defined a physiological directed network of the whole brain, starting at input areas and labeling each brain area with the distance or "depth" from sensory inputs. They then processed the massive repository of fMRI data.

"The idea was to project the active regions for a cognitive behavior onto the network depth and describe that cognitive behavior in terms of its depth distribution," says Siegelmann.

"We momentarily thought our research failed when we saw that each cognitive behavior showed activity through many network depths. Then we realized that cognition is far richer, it wasn't the simple hierarchy that everyone was looking for. So, we developed our geometrical 'slope' algorithm."

To illustrate, she suggests imagining a balance where the right pan holds total brain activity with the shallowest depth; the other pan holds activity in deepest brain areas most removed from inputs.

If the balance arm describes the total brain activity for a particular cognitive behavior, the right pan will be lower, creating a negative slope, when most activity is in shallow areas, and the left pan will go lower when most activity is deeper, creating a positive slope. The balance arm's slope describes the relative shallow-to-deep brain activity for any behavior.

"Our geometric algorithm works on this principle, but instead of two pans, it has many," she says.

The researchers summed all neural activity for a given behavior over all related fMRI experiments, then analyzed it using the slope algorithm. "With a slope identifier, behaviors could now be ordered by their relative depth activity with no human intervention or bias," she adds.

They ranked slopes for all cognitive behaviors from the fMRI databases from negative to positive and found that they ordered from more tangible to highly abstract. An independent test of an additional 500 study participants supported the result.

Siegelmann says this work will have great impact in computer science, especially in deep learning.

"Deep learning is a computational system employing a multi-layered neural net, and is at the forefront of artificial intelligence (AI) learning algorithms," she explains. "It bears similarity to the human brain in that higher layers are agglomerations of previous layers, and so provides more information in a single neuron.

But the brain's processing dynamic is far richer and less constrained because it has recurrent interconnection, sometimes called feedback loops. In current human-made deep learning networks that lack recurrent interconnections, a particular input cannot be related to other recent inputs, so they can't be used for time-series prediction, control operations, or memory."

Her lab is now creating a "massively recurrent deep learning network," she says, for a more brain-like and superior learning AI. Another interesting outcome of this research will be a new geometric data-science tool, which is likely to find widespread use in other fields where massive data is difficult to view coherently due to data overlap.

Siegelmann believes this work, supported by the Office of Naval Research, will have far-reaching effects. "

Many brain disorders are implicated by non-standard processing or abnormal combination of sensory information. Currently, many brain disorders lack a clear biological identifier, and are diagnosed by symptoms, such as confusion, memory loss and depression.

"Our research suggests an entirely new method for analyzing brain abnormalities and is a source of new hope for developing biomarkers for more accurate and earlier diagnoses of psychiatric and neurological diseases."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Massachusetts at Amherst
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ABOUT US
Chitchat and small talk could serve an evolutionary need to bond with others
Princeton NJ (SPX) Dec 16, 2015
We think of chitchat and small talk as the things people say to pass the time or kill an awkward silence. New research suggests, however, that these idle conversations could be a social-bonding tool passed down from primates. Princeton University researchers report in the journal Animal Behaviour that social primates use vocalizations far more selectively than scientists previously thought ... read more


ABOUT US
NASA orders second Boeing Crew Mission to ISS

ESA and Arianespace ink James Webb Space Telescope launch contract

Moscow Confirms Suspension of Russian-Ukrainian 'Dnepr' Rocket Launches

SpaceX Falcon 9 launch scrubbed until Monday

ABOUT US
Insight shipped to California for March launch to Mars

New Mars rover findings revealed at American Geophysical Union Conference

Opportunity performs a week of robotic arm at Marathon Valley

Rocks Rich in Silica Present Puzzles for Mars Rover Team

ABOUT US
Rare full moon on Christmas Day

LADEE Mission Shows Force of Meteoroid Strikes on Lunar Exosphere

XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

ABOUT US
New Horizons team releases detailed slice of Pluto

Zooming in on Pluto's Pattern of Pits

Pluto's close-up, now in color

New Visualization of Space Environment at Pluto

ABOUT US
Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

ABOUT US
XCOR claims major breakthrough with its engine technology

DoD to reply to McCain's letter on Russian rocket engines

Vega graduates with perfect record

NASA Marshall Prepares for SLS Foam Testing

ABOUT US
Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

ABOUT US
Asteroid WT24 looks even better second time around

NASA: Asteroid to pass by Earth on Christmas Eve

Ride along with Rosetta through the eyes of OSIRIS

Hayabusa2 Earth Swing-by Result









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.