Space Travel News  
FLORA AND FAUNA
How The Slime Mold Gets Organized

When food is scarce, the separate cells of the slime mold aggregate and form what is called a fruiting body. Cells at the tip of the fruiting body organize into a formation very similar to the epithelial layer of cells found in many organs of higher animals. Researchers found that the proteins responsible for organizing cells at the tip of the slime mold's fruiting body are genetically very similar to those that perform the same function in animal cells. Credit: Zina Deretsky, National Science Foundation
by Staff Writers
Washington DC (SPX) Mar 15, 2011
The so-called cellular slime mold, a unicellular organism that may transition into a multicellular organism under stress, has just been found to have a tissue structure that was previously thought to exist only in more sophisticated animals. What's more, two proteins that are needed by the slime mold to form this structure are similar to those that perform the same function in more sophistical animals.

Shortly after an animal embryo forms, it develops a single layer of cells that, shaped like a hollow ball, is empty at its center. Acting as a kind of "man behind the curtain" that directs these cells to organize into this hollow formation are several proteins that help each cell touch its neighbors but keep its top surface exposed to the formation's empty interior.

Even after animals grow beyond the embryo stage, the cells in many organs of their bodies maintain this type of hollow structure. These organs include those in the digestive tracts of animals, which feature a layer of cells, called epithelial cells, that face inward to form a hollow structure and are shaped asymmetrically to give organs their directionality.

For example, the asymmetric epithelial cells of animal intestines face inward to form a hollow structure through which nutrients are absorbed. Likewise, the asymmetric epithelial cells of animal glands, such as salivary and endocrine glands, also face inward to form a hollow structure. But instead of absorbing substances as do the epithelial cells of animal intestines, these glandular epithelial cells secrete into their hollow structure substances that they produce.

With funding from the National Science Foundation, Daniel Dickinson, W. James Nelson and William Weis--all of Stanford University--took a careful look at the final, mature stage of slime mold development under a high-powered microscope. They report their results in the journal Science, March 11, 2011.

The slime mold spends most of its life as a single-celled organism, living in soil and preying on bacteria. However when food runs short, thousands of slime mold cells aggregate to form a mound. They then grow into a fruiting body--which is a stalk, a few millimeters tall, whose top peeks over the surface of the ground and holds spores.

The researchers found that the organization and directionality of cells in this top part of the extending stalk are surprisingly similar to those of the epithelial cells of some organs of higher animals.

Dickinson and his colleagues also discovered that in order for the cells in the top of the slime mold's stalk to organize into an epithelium, they need analogues to two of the many proteins that are needed by animal cells to organize into an epithelium. Called alpha-catenin and beta-catenin, these slime mold analogues are genetically and biochemically similar to their animal versions. And when the researchers removed these analogues from the cells of slime molds, they lost their ability to organize correctly.

In addition to requiring proteins that are similar to those required by some animal epithelial tissues, the slime mold's epithelium tissue behaves similarly to the epithelial tissue of some animals--it is secretory. It secretes proteins that coat the stalk of the fruiting body and give it the rigidity it needs to send its spores out onto the ground in search of new food.

"We don't know whether the ancient ancestor of slime molds and animals was actually able to form an epithelium," says Dickinson, "but it must have had alpha-catenin and beta-catenin, and we suspect that these proteins had some role in organizing cells."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Stanford University
Darwin Today At TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


FLORA AND FAUNA
American Birds Of Prey At Higher Risk Of Poisoning From Pest Control Chemicals
London UK (SPX) Mar 14, 2011
A new study by scientists from Maryland and Colorado using American kestrels, a surrogate test species for raptorial birds, suggests that they are at greater risk from poisoning from the rodenticide diphacinone than previous believed. The research, published in Environmental Toxicology and Chemistry, considers the threat posed by diphacinone as its usage increases following restrictions on the u ... read more







FLORA AND FAUNA
Falcon 9 To Launch SES-8 To GTO In 2013

United Launch Alliance Successfully Launches Fourth NRO Mission In Six Months

Indian Space Agency To Now Launch Three Satellites In April

New Dawn Arrives At Spaceport

FLORA AND FAUNA
Color View From Orbit Shows Mars Rover Beside Crater

Testing Mars Missions In Morocco

Rover Snaps Close-Up of 'Ruiz Garcia'

Prolific NASA Orbiter Reaches Five-Year Mark

FLORA AND FAUNA
Astrobotic's Mission To The Moon Releases Guide For Payload Developers

China Expects To Launch Fifth Lunar Probe Change-5 In 2017

The Great Moonbuggy Race

Venus And Crescent Moon Pair Up At Dawn

FLORA AND FAUNA
Can WISE Find The Hypothetical Tyche In Distant Oort Cloud

Theory: Solar system has another planet

Launch Plus Five Years: A Ways Traveled, A Ways To Go

Mission To Pluto And Beyond Marks 10 Years Since Project Inception

FLORA AND FAUNA
Report Identifies Priorities For Planetary Science 2013-2022

Planetary Society Statement On Planetary Science Decadal Survey For 2013-2022

Meteorite Tells Of How Planets Are Born In A Swirl Of Dust

Planet Formation In Action

FLORA AND FAUNA
SpaceX Expanding Texas Operations

Andrews Space Awarded USAF Reusable Booster System Study Contract

World's Largest Rocket Production Base Takes Shape In North China

SwRI Signs Up For 8 Reusable Suborbital Launches

FLORA AND FAUNA
What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

China Expects To Launch Fifth Lunar Probe Chang'e-5 In 2017

FLORA AND FAUNA
Vesta - An Asteroid In 3D

Dawn Gets Vesta Target Practice

Hawaii Astronomers Keep Tabs On Asteroid Apophis

A New Dawn Coming To Vesta


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement