![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Glasgow, UK (SPX) Apr 03, 2007 Given the choice, many of us would opt for warmer climes during the bleak midwinter. However, most of us cannot afford to move abroad for a few months, so instead we pile on extra layers of clothing to keep warm. Arthropods face much the same dilemma, as they cannot migrate long distances to avoid low winter temperatures - so why are they not killed off by the cold? Dr Melody Clark, from the British Antarctic Survey, will present data on the fascinating ways two species of these animals combat the cold on Tuesday 3rd April at the Society for Experimental Biology's Annual Meeting in Glasgow. Onychiurus arcticus (from the Arctic) uses protective dehydration to survive harsh Arctic winters. This means that water is lost from the body across a diffusion gradient between the animals' super-cooled body fluids and ice in the surroundings. "During this process the body loses all its water and you end up with a normal looking head, and a body which looks like a crumpled up crisp packet when it is fully dehydrated. But add a drop of water and it all goes back to normal!" explains Dr Clark. Scientists examined the different stages of this process to see which genes were activated. Cryptopygus antarcticus lives in the Antarctic and uses a different mechanism to survive cold temperatures. These creatures accumulate anti-freeze compounds which lower the temperature at which their bodies freeze, meaning they can withstand temperatures as low as minus 30C. Within this population there is a clear divide into less- and more-cold hardened animals, which has been a puzzle to researchers. However, by looking for differences in gene expression levels between the two populations, scientists think that there could be a link to moulting (this is the process by which arthropods shed their exoskelton). Related Links Society for Experimental Biology Darwin Today At TerraDaily.com Darwin Today At TerraDaily.com
![]() ![]() Searching for clues to the potential for life on Mars, NASA scientists recently explored microbial communities in some of the world's oldest, driest and most remote deserts in China's northwest region, and found evidence suggesting that conditions there may be similar to those in certain regions of Mars. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement |