Subscribe free to our newsletters via your
. Space Travel News .




INTERN DAILY
High-tech method allows rapid imaging of functions in living brain
by Staff Writers
St. Louis MO (SPX) Apr 01, 2015


These images show fast functional photoacoustic microscopy of the mouse brain. Figure (d, left) shows a representative x-y projected brain vasculature image through an intact skull. Figure (e) shows a representative enhanced x-z projected brain vasculature image. Figure (f) shows photoacoustic microscopy of oxygen saturation of hemoglobin in the mouse brain, acquired by using the single-wavelength pulse-width0based method with two lasers. Image courtesy Lihong Wang, PhD, Washington University in St. Louis.

Researchers studying cancer and other invasive diseases rely on high-resolution imaging to see tumors and other activity deep within the body's tissues. Using a new high-speed, high-resolution imaging method, Lihong Wang, PhD, and his team at Washington University in St. Louis were able to see blood flow, blood oxygenation, oxygen metabolism and other functions inside a living mouse brain at faster rates than ever before.

Using photoacoustic microscopy (PAM), a single-wavelength, pulse-width-based technique developed in his lab, Wang, the Gene K. Beare Professor of Biomedical Engineering in the School of Engineering and Applied Science, was able to take images of blood oxygenation 50 times faster than their previous results using fast-scanning PAM; 100 times faster than their acoustic-resolution system; and more than 500 times faster than phosphorescence-lifetime-based two-photon microscopy (TPM).

Other existing methods, including functional MRI (fMRI), TPM and wide-field optical microscopy, have provided information about the structure, blood oxygenation and flow dynamics of the mouse brain. However, those methods have speed and resolution limits, Wang says.

To make up for these limitations, Wang and his lab implemented fast-functional PAM, which allowed them to get high-resolution, high-speed images of a living mouse brain through an intact skull. This method achieved a lateral spatial resolution of five times finer than the lab's previous fast-scanning system; 25 times finer than its previous acoustic-resolution system; and more than 35 times finer than ultrasound-array-based photoacoustic computed tomography.

Most importantly, PAM allowed 3-D blood oxygenation imaging with capillary-level resolution at a one-dimensional imaging rate of 100 kHz, or 10 microseconds.

"Using this new single-wavelength, pulse-width-based method, PAM is capable of high-speed imaging of the oxygen saturation of hemoglobin," Wang said. "In addition, we were able to map the mouse brain oxygenation vessel by vessel using this method."

"Much of what we have learned about human brain function in the past decade has been based on observing changes in blood flow using functional MRI," said Richard Conroy, PhD, program director for Optical Imaging at the National Institute of Biomedical Imaging and Bioengineering.

"Wang's work dramatically increases both the spatial and temporal resolution of photoacoustic imaging, which now has the potential to reveal blood flow dynamics and oxygen metabolism at the level of individual cells. In the future, photoacoustic imaging could serve as an important complement to fMRI, leading to critical insights into brain function and disease development."

Concerned about the effects of the microscopy method on the living tissue, Wang and his team found that all red blood cells that were imaged were intact, and there was no damage to brain tissue.

"PAM is exquisitely sensitive to hemoglobin in the blood and to its color change due to oxygen binding," Wang said. "Without injecting any exogenous contrast agent, PAM allows us to quantify vessel by vessel all of the vital parameters about hemoglobin and to even compute the metabolic rate of oxygen. Given the importance of oxygen metabolism in basic biology and diseases such as diabetes and cancer, PAM is expected to find broad applications."

Yao J, Wang L, Yang J-M, Maslov K, Wong T, Li L, Huang C-H, Zou J, Wang LV. High-speed Label-free Functional Photoacoustic Microscopy of Mouse Brain in Action. Nature Methods. Published in advanced online publication March 30, 2015, doi: 10.1038/nmeth.3336.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Washington University in St. Louis
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
3-D skin maps of relationships between molecules, microbes and environment
San Diego CA (SPX) Mar 31, 2015
Researchers at the University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences used information collected from hundreds of skin swabs to produce three-dimensional maps of molecular and microbial variations across the body. These maps provide a baseline for future studies of the interplay between the molecules that make up our skin, the microbes that live on us ... read more


INTERN DAILY
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

Russia Launches Satan Missile With S Korean Kompsat 3A Satellite

INTERN DAILY
Rover Amnesia Event Follows Latest Memory Reformatting

Ancient Martian lake system records 2 water-related events

Curiosity Rover Finds Biologically Useful Nitrogen on Mars

NASA's Opportunity Mars Rover Passes Marathon Distance

INTERN DAILY
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

INTERN DAILY
Help Name New Features on Pluto

Name the features on Pluto and its moon Charon

Science Shorts: Why Pluto?

Pluto Science, on the Surface

INTERN DAILY
Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

INTERN DAILY
Falcon 9 Evolves

Lockheed Martin buys high-speed wind tunnel

Aerojet Rocketdyne Hot-Fire Tests Additive Components for the AR1 Engine

Sierra Nevada Corporation Unveils New Dream Chaser Cargo System

INTERN DAILY
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

INTERN DAILY
Next Steps on Journey to Mars: Progress on Asteroid Initiative

NASA plans to bring boulder into moon orbit

Comet 67P's Speed of Rotation Shows Signs of Slowing Down

Rosetta makes first detection of molecular nitrogen at a comet




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.