Space Travel News  
SOLAR DAILY
Harvesting the sun's energy for clean drinking water
by Staff Writers
Tokyo, Japan (SPX) Dec 11, 2020

illustration only

Without drinkable water there is no life. Yet, nearly 1.1 billion people worldwide lack access to fresh water and another 2.4 billion suffer from diseases borne by unclean drinking water. This is because while science has yielded advanced water treatment methods such as membrane distillation and reverse osmosis, these are often difficult to implement in developing countries owing to their high cost and low productivity.

A more nascent technology shows promise as an alternative for such regions of the world: direct solar steam generation (DSSG). DSSG involves harvesting the heat from the sun to convert water into vapor, thereby desalinating it or ridding it of other soluble impurities. The vapor is then cooled and collected as clean water for use.

This is a simple technology, but a key step, evaporation, is presenting roadblocks for its commercialization. With existing technology, evaporation performance has hit the theoretical limit. However, this is not sufficient for practical implementation. Measures to improve device design to minimize solar heat loss before it reaches bulk water, recycle latent heat in the water, absorb and utilize energy from the surroundings as well, and so on, have been taken to improve the evaporation performance beyond the theoretical limit and make this technology viable.

In a new paper published in Solar Energy Materials and Solar Cells, Professor Lei Miao from Shibaura Institute of Technology, Japan, along with colleagues Xiaojiang Mu, Yufei Gu, and Jianhua Zhou from Guilin University of Electronic Technology, China, review strategies formulated in the last two years to surpass this theoretical limit. "Our aim is to summarize the story of the development of new evaporation strategies, point out current deficiencies and challenges, and lay out future research directions to hasten the practical application of the DSSG purification technology", says Prof. Miao.

A pioneering strategy with which this evolutionary saga begins is the volumetric system, which, in lieu of bulk heating, uses a suspension of noble metals or carbon nanoparticles to absorb the sun's energy, transfer heat to the water surrounding these particles, and generate steam. While this increases the absorbed energy of the system, there is much heat loss.

To address this issue, the "direct contact type" system was developed, in which a double-layer structure with pores of different sizes covers the bulk water. The top layer with larger pores serves as a heat absorber and vapor escape route and the bottom layer with smaller pores is used to transport water up from the bulk to the top layer. In this system, the contact between the heated top layer and the water is concentrated, and heat loss is reduced to about 15%.

The "2D water path" or "indirect contact type" system came next, which further lowered heat loss by avoiding contact between the solar energy absorber and bulk water. This paved the way for the eventual development of the "1D water path" system, which is inspired by the natural capillary-action-based water transport process in plants. This system displays an impressive evaporation rate of 4.11 kg m-2h-1, nearly thrice the theoretical limit, along with a heat loss of only 7%.

This was followed by the injection-control technique in which the controlled sprinkling of water as rain on the solar energy absorber allows its absorption in a manner mimicking that in soil. This results in an evaporation rate of 2.4 kg m-2h-1 with a conversion efficiency of 99% from solar energy to water vapor.

Parallelly, strategies to gain additional energy from the environment or from the bulk water itself, and recover the latent heat from high-temperature steam, have been under development to improve the evaporation rate. Techniques to reduce the energy required for evaporation in the first place are also being developed, such as hydratable and light-absorbing aerogels, polyurethane sponge with carbon black nanoparticles, and carbon dot (CD) coated wood to hold the sun's energy and the water to be evaporated.

Several other such design strategies exist and several more are to come. Many pertinent issues--like the collection of the condensed water, durability of the materials, and stability during outdoor applications under fluctuating wind and weather conditions, remain to be addressed.

Yet the pace at which work on this technology is progressing makes it one to look forward to. "The path to the practical implementation of DSSG is riddled with problems," says Prof. Miao. "But given its advantages, there is a chance that it will be one of the frontrunning solutions to our growing drinking water scarcity problem."

Research Report: Strategies for breaking theoretical evaporation limitation in direct solar steam generation


Related Links
Shibaura Institute Of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Outdoor solar testing maybe the IoT for Photovoltaics
Tempe AZ (SPX) Dec 09, 2020
A new system for measuring solar performance over the long term in scalable photovoltaic systems, developed by Arizona State University researchers, represents a breakthrough in the cost and longevity of interconnected power delivery. When solar cells are developed, they are "current-voltage" tested in the lab before they are deployed in panels and systems outdoors. Once installed outdoors, they aren't usually tested again unless the system undergoes major issues. The new test system, Suns-Voc, me ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Best region for life on Mars was far below surface

New tech can get oxygen, fuel from Mars's salty water

Laboratory experiments unravelling the mystery of the Mars moon Phobos

ESA and Auroch Digital launch Mars Horizon game

SOLAR DAILY
MDA announces contract for Canadarm3

NASA chooses 4 firms for first private lunar sample collection

Chinese lunar probe on way back to Earth

Chang'e 5 mission completes difficult docking in lunar orbit

SOLAR DAILY
Swedish space instrument participates in the search for life around Jupiter

Researchers model source of eruption on Jupiter's moon Europa

Radiation Does a Bright Number on Jupiter's Moon

New plans afoot beyond Pluto

SOLAR DAILY
Fast-moving gas flowing away from young star's asteroid belt may be caused by icy comet vaporisation

Rapid-forming giants could disrupt spiral protoplanetary discs giants

Here's Looking at You, MKID

A terrestrial-mass planet on the run?

SOLAR DAILY
SpaceX's Falcon 9 lifts off, en route to International Space Station

EUMETSAT confirms the choice of Arianespace's European launchers for its future missions

Chinese scientists test prototype hypersonic aircraft engine to go anywhere in 2 hours

NASA Building Core Stages for Second, Third Artemis Flights

SOLAR DAILY
China plans to launch new space science satellites

How it took decades for space program to take off

China to Begin Construction of Its Space Station Next Year

Moon mission tasked with number of firsts for China

SOLAR DAILY
Asteroid dust collected by Japan probe arrives on Earth

Chaotic early solar system collisions resembled 'asteroids' arcade game

Special delivery: Japan space probe to bring asteroid dust to Earth

Lab developing device to help Earth dodge asteroids









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.