Space Travel News  
SOLAR DAILY
Harnessing solar energy: new method improves readings of double-sided panels
by Staff Writers
Ottawa, Canada (SPX) Jan 19, 2023

Erin Tonita, lead author and a Physics PhD student involved with SUNLAB at the University of Ottawa, the premier Canadian modelling and characterization laboratory for next generation bifacial, multi-junction, and concentrator solar devices.

A leading laboratory in photonics and renewable energy at the University of Ottawa has developed a new method for measuring the solar energy produced by bifacial solar panels, the double-sided solar technology which is expected to meet increased global energy demands moving forward.

Published in the journal Joule, this study from the SUNLAB team in the Faculties of Engineering and Science proposes a characterization method that will improve the measurement of bifacial panels indoors by considering external effects of ground cover such as snow, grass and soil. This will provide a way to consistently test bifacial solar panel performance indoors that accurately represents how the panels will perform outdoors.

With bifacial photovoltaics expected to provide over 16% of global energy demand by 2050, the SUNLAB's methodology will improve international device measurement standards which currently do not distinguish between ground cover.

"Our proposed characterization method, the scaled rear irradiance method, is an improved method for indoor-measuring and modelling of bifacial devices that is representative of outdoor environmental conditions," explains Erin Tonita, lead author and a Physics PhD student studying under Professor Karin Hinzer, whose research group develops new ways to harness the sun's energy.

"Incorporating this new method into future bifacial standards would provide a consistent methodology for testing bifacial panel performance under ground conditions including snow, grass, and soil, corresponding to globally varying illumination conditions."

Photovoltaics is the study of converting solar energy into electricity through semiconducting materials, such as silicon. In bifacial solar panels, the semiconducting material is wedged between two sheets of glass to allow for sunlight collection on both sides, with one side typically angled towards the sun and the other side angled towards the ground.

The additional light collected by bifacial solar panels on the rear-side offers an advantage over traditional solar panels, with manufacturers touting up to a 30% increase in production compared to traditional solar panels. Bifacial solar panels are also more durable than traditional panels and can produce power for over 30 years.

"Implementation of this method into international standards for such panels can enable predictions of outdoor bifacial panel performance to within 2% absolute", says Tonita, who expects the benefits of this methodology to include:

+ Allowing comparisons between existing and emerging bifacial technologies.
+ Enhancing performance via ground cover specific design optimization.
+ Increasing solar panel deployments in non-traditional markets.
+ Reducing investment risk in bifacial panel deployments.
+ Improving bifacial panel manufacture datasheets. "This method is of particular importance as renewable energy penetration increases towards a net-zero world, with bifacial photovoltaics projected to contribute over 16% of the global energy supply by 2050, or around 30,000 TWh annually," says Hinzer, founder of SUNLAB and the University Research Chair in Photonic Devices for Energy and a Professor at the School of Electrical Engineering and Computer Science.

"This will extend current International Electrochemical Commission standards for bifacial solar panel measurements, enabling accurate comparisons of bifacial panel technologies, application-specific optimization, and the standardization of bifacial panel power ratings," adds Hinzer, whose SUNLAB researchers worked in collaboration with Arizona State University for the study.

Research Report:A general illumination method to predict bifacial photovoltaic system performance


Related Links
SUNLAB
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Solar tower power plants - sunlight becomes electricity on demand
Berlin, Germany (SPX) Jan 23, 2023
Solar power is becoming an increasingly important source of energy worldwide. At present, photovoltaic systems are predominantly being used in Germany. For sunny countries, solar tower power plants are a valuable addition. They store heat and can generate electricity at any time - even when the sun is not shining. The new highlight images from the German TerraSAR-X and TanDEM-X radar satellites present unique images of the changing Earth and also show solar thermal power plants around the world. I ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Ingenuity completes the A-Z tour of the Wright Brothers Field at Jezero Crater

Use the Force, Percy!

Martian meteorite contains large diversity of organic compounds

Pausing to take in the view: Sols 3710-3711

SOLAR DAILY
Fireworks, flowers in Wuhan for Lunar New Year but grief lingers

Mounting the first human mission to the Lunar South Pole

Lunar Flashlight team assessing spacecraft's propulsion system

Chinese scientists discover ubiquitous, increasing ferric iron on lunar surface

SOLAR DAILY
SwRI scientists find evidence for magnetic reconnection between Ganymede and Jupiter

SwRI delivers innovative instrument for NASA's Europa Clipper mission

PSI Io Input/Output observatory discovers large volcanic outburst on Jupiter's moon Io

Mix a space juice to celebrate ESA's Juice mission

SOLAR DAILY
How do rocky planets really form

NASA's Webb confirms its first exoplanet

Distant star's dimming was likely a 'dusty' companion getting in the way, astronomers say

NASA wants you to help study planets around other stars

SOLAR DAILY
SEXBOMB being moved to Cornwall Space Port for hypersonic developments

Vulcan rocket one step closer to launch

Update on "Start Me Up" mission anomaly

Sweden opens Mainland Europe's first spaceport

SOLAR DAILY
China's space industry hits new heights

China's first private sector 2023 rocket launch up, up and away

First rocket launch of the New Year leaves Wenchang for space

Space contractors release China's launch plans for 2023

SOLAR DAILY
Once in 50,000-year comet may be visible to the naked eye

Construction Begins on NASA's Next-Generation Asteroid Hunter

HAARP to bounce signal off asteroid in NASA experiment

How Hera asteroid mission will phone home









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.