Subscribe free to our newsletters via your
. Space Travel News .




ABOUT US
Handful of genetic changes led to huge changes to human brain
by Staff Writers
New Haven CT (SPX) Jun 04, 2012


File image.

Changes to just three genetic letters among billions led to evolution and development of the mammalian motor sensory network, and laid the groundwork for the defining characteristics of the human brain, Yale University researchers report.

This networks provides the direct synaptic connections between the multi-layered neocortex in the human brain responsible for emotions, perception, and cognition and the neural centers of the brain that make fine motor skills possible.

A description of how a few simple changes during the early development of mammals led to the creation of complex structures such as the human brain was published May 31 in the journal Nature.

"What we found are the genetic zip codes that direct cells to form the motorsensory network of the neocortex," said Nenad Sestan, associate professor of neurobiology, a researcher for the Kavli Institute for Neuroscience, and senior author of the paper

The paper investigated the genetic changes that occur during the early stages of development of an embryo and that direct cells to take on specific functions. Bits of DNA that do not code for proteins, called cis-regulatory elements, have been previously identified as critical drivers of evolution. These elements control the activation of genes that carry out the formation of the basic body plans of all organisms.

Sungbo Shim, the first author, and other members of Sestan's lab identified one such regulatory DNA region, which they named E4, that specifically enhances development of the corticospinal system.

E4 is conserved in all mammals, indicating its importance to survival, the scientists explain. The lab also discovered how SOX4, SOX11, and SOX5 - sections of DNA called transcription factors - control the expression of genes and operate cooperatively to shape this network in the developing embryo. The changes in the genetic alphabet needed to trigger these evolutionary changes were tiny, note the researchers.

By manipulating only three genetic letters, scientists were able to functionally "jumpstart" regulatory activity in a zebrafish.

The authors also show that SOX4 and SOX11 are important for the layering of the neocortex, an essential change that led to increased complexity of the brain organization in mammals, including humans.

"Together, our fine motor skills that allow us to manipulate tools, walk, speak, and write, as well as our cognitive and emotional abilities that allow us to think, love, and plan all derive from these changes," Sestan said.

Sestan's lab is also investigating whether other types of changes in these genes and regulatory elements early in development might lead to intellectual disability and autism.

Other Yale-affliated authors of the paper are Kenneth Y. Kwan and Mingfeng Li.

.


Related Links
Yale University
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ABOUT US
Family values
Washington DC (SPX) May 30, 2012
In early human evolution, when faithful females began to choose good providers as mates, pair-bonding replaced promiscuity, laying the foundation for the emergence of the institution of the modern family, a new study finds. The study helps answer long-standing questions in evolutionary biology about how the modern family, characterized by intense, social attachments with exclusive mates, e ... read more


ABOUT US
Sea Launch Delivers the Intelsat 19 Spacecraft into Orbit

SpaceX Dragon capsule splash lands in Pacific

US cargo ship on return voyage from space station

US cargo vessel prepares to leave space station

ABOUT US
Wind may have driven avalanches on Martian dunes

On The Hunt For Light-Toned Veins Of Gypsum

Mars missions may learn from meteor Down Under

Waking Up with the Sun's Rays

ABOUT US
UA Lunar-Mining Team Wins National Contest

NASA Lunar Spacecraft Complete Prime Mission Ahead of Schedule

NASA Offers Guidelines To Protect Historic Sites On The Moon

Neil Armstrong gives rare interview - to accountant

ABOUT US
It's a Sim: Out in Deep Space, New Horizons Practices the 2015 Pluto Encounter

Beyond Pluto And Exploring the Kuiper Belt

Uranus auroras glimpsed from Earth

Herschel images extrasolar analogue of the Kuiper Belt

ABOUT US
Tiny Planet-Finding Mirrors Borrow from Webb Telescope Playbook

Astronomers Probe 'Evaporating' Planet Around Nearby Star with Hobby-Eberly Telescope

Venus transit may boost hunt for other worlds

NSO To Use Venus Transit To Fine-Tune Search For Other Worlds

ABOUT US
Sierra Nevada Announces the Completion of Four Dream Chaser Milestones FOR NASA

J-2X Engine Continues to Set Standards

Liquid Oxygen Piston Pump Ready for Reusable Space Flight

Pictures show N. Korea rocket launch upgrade

ABOUT US
What will China's Taikonauts do aboard Tiangong 1?

Why is China sending a woman into space?

China launches telecommunication satellite

Tiangong 1 Ready To Meet Shenzhou 9

ABOUT US
Dawn deep in the asteroid belt orbiting Vesta

UT's Josh Emery Uncovers Clues About Asteroid That Will Pass Near Earth

Rosetta flyby uncovers the complex history of asteroid Lutetia

OSIRIS-REx Scientists Measure Yarkovsky Effect




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement