Space Travel News  
FLORA AND FAUNA
Gut bacteria's shocking secret: They produce electricity
by Staff Writers
Berkeley CA (SPX) Sep 17, 2018

Listeria bacteria transport electrons through their cell wall into the environment as tiny currents, assisted by ubiquitous flavin molecules (yellow dots).

While bacteria that produce electricity have been found in exotic environments like mines and the bottoms of lakes, scientists have missed a source closer to home: the human gut.

University of California, Berkeley, scientists discovered that a common diarrhea-causing bacterium, Listeria monocytogenes, produces electricity using an entirely different technique from known electrogenic bacteria, and that hundreds of other bacterial species use this same process.

Many of these sparking bacteria are part of the human gut microbiome, and many, like the bug that causes the food-borne illness listeriosis, which can also cause miscarriages, are pathogenic. The bacteria that cause gangrene (Clostridium perfringens) and hospital-acquired infections (Enterococcus faecalis) and some disease-causing streptococcus bacteria also produce electricity. Other electrogenic bacteria, like Lactobacilli, are important in fermenting yogurt, and many are probiotics.

"The fact that so many bugs that interact with humans, either as pathogens or in probiotics or in our microbiota or involved in fermentation of human products, are electrogenic - that had been missed before," said Dan Portnoy, a UC Berkeley professor of molecular and cell biology and of plant and microbial biology. "It could tell us a lot about how these bacteria infect us or help us have a healthy gut."

The discovery will be good news for those currently trying to create living batteries from microbes. Such "green" bioenergetic technologies could, for example, generate electricity from bacteria in waste treatment plants.

The research will be posted online Sept. 12 in advance of Oct. 4 print publication in the journal Nature.

Breathing metal
Bacteria generate electricity for the same reason we breathe oxygen: to remove electrons produced during metabolism and support energy production. Whereas animals and plants transfer their electrons to oxygen inside the mitochondria of every cell, bacteria in environments with no oxygen - including our gut, but also alcohol and cheese fermentation vats and acidic mines - have to find another electron acceptor.

In geologic environments, that has often been a mineral - iron or manganese, for example - outside the cell. In some sense, these bacteria "breathe" iron or manganese.

Transferring electrons out of the cell to a mineral requires a cascade of special chemical reactions, the so-called extracellular electron transfer chain, which carries the electrons as a tiny electrical current. Some scientists have tapped that chain to make a battery: stick an electrode in a flask of these bacteria and you can generate electricity.

The newly discovered extracellular electron transfer system is actually simpler than the already known transfer chain, and seems to be used by bacteria only when necessary, perhaps when oxygen levels are low. So far, this simpler electron transfer chain has been found in bacteria with a single cell wall - microbes classified as gram-positive bacteria - that live in an environment with lots of flavin, which are derivatives of vitamin B2.

"It seems that the cell structure of these bacteria and the vitamin-rich ecological niche that they occupy makes it significantly easier and more cost effective to transfer electrons out of the cell," said first author Sam Light, a postdoctoral fellow. "Thus, we think that the conventionally studied mineral-respiring bacteria are using extracellular electron transfer because it is crucial for survival, whereas these newly identified bacteria are using it because it is 'easy.'"

To see how robust this system is, Light teamed up with Caroline Ajo-Franklin from Lawrence Berkeley National Laboratory, who explores the interactions between living microbes and inorganic materials for possible applications in carbon capture and sequestration and bio-solar energy generation.

She used an electrode to measure the electric current that streams from the bacteria - up to 500 microamps - confirming that it is indeed electrogenic. In fact, they make about as much electricity - some 100,000 electrons per second per cell - as known electrogenic bacteria.

Light is particularly intrigued by the presence of this system in Lactobacillus, bacteria crucial to the production of cheese, yogurt and sauerkraut. Perhaps, he suggests, electron transport plays a role in the taste of cheese and sauerkraut.

"This is a whole big part of the physiology of bacteria that people didn't realize existed, and that could be potentially manipulated," he said.

Light and Portnoy have many more questions about how and why these bacteria developed such a unique system. Simplicity - it's easier to transfer electrons through one cell wall rather than through two - and opportunity - taking advantage of ubiquitous flavin molecules to get rid of electrons - appear to have enabled these bacteria to find a way to survive in both oxygen-rich and oxygen-poor environments.


Related Links
University of California - Berkeley
Darwin Today At TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FLORA AND FAUNA
Successful ant colonies hint at how societies evolve
Princeton NJ (SPX) Sep 11, 2018
Ants and humans live in large societies that allow for elaborate structures - nests, cities - filled with resources. Sometime in the distant past, individuals must have organized themselves into the first simple groups, precursors of these complex societies. But how? A team of researchers from Princeton University and Rockefeller University tackled this question by combining sophisticated mathematical models with detailed empirical observations of the clonal raider ant (Ooceraea biroi). "Our ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FLORA AND FAUNA
FLORA AND FAUNA
Curiosity Surveys a Mystery Under Dusty Skies

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

Team Continues to Listen for Opportunity

Opportunity rover expected to call home as Martian dust storm clears

FLORA AND FAUNA
Mysterious 'lunar swirls' point to moon's volcanic, magnetic past

US Geological Survey Hopes to Begin Prospecting for Space Mines Soon

Direct evidence of ice on Moon surface discovered

Bricks from Moon dust

FLORA AND FAUNA
Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter

Water discovered in the Great Red Spot indicates Jupiter might have plenty more

FLORA AND FAUNA
New Exoplanet Discovered by Team Led by Canadian Student

A Direct-Imaging Mission to Study Earth-like Exoplanets

Youngest Accretion Disk Detected in Star Formation

Rutgers scientists identify protein that may have existed when life began

FLORA AND FAUNA
Supply of Russian rocket engines to China will benefit ties

Soyuz-2.1a Rocket's Launch Might Be Rescheduled for 2019

NASA tests engine part to reduce costs

Elon Musk muses about life over whiskey and weed

FLORA AND FAUNA
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

FLORA AND FAUNA
Asteroid-Deflection Mission Passes Key Development Milestone

The Halloween asteroid prepares to return in 2018

Particles collected by spacecraft help date ancient asteroid Itokawa

Potentially hazardous asteroids to swing past Earth this week









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.