Space Travel News
OIL AND GAS
Graphene discovery could help generate hydrogen cheaply and sustainably
file illustration only
Graphene discovery could help generate hydrogen cheaply and sustainably
by Staff Writers
Warwick UK (SPX) Aug 24, 2023

Researchers from The University of Warwick and the University of Manchester have finally solved the long-standing puzzle of why graphene is so much more permeable to protons than expected by theory. A decade ago, scientists at The University of Manchester demonstrated that graphene is permeable to protons, nuclei of hydrogen atoms.

The unexpected result started a debate in the community because theory predicted that it would take billions of years for a proton to permeate through graphene's dense crystalline structure. This had led to suggestions that protons permeate not through the crystal lattice itself, but through the pinholes in its structure.

Now, writing in Nature, a collaboration between the University of Warwick, led by Prof. Patrick Unwin, and The University of Manchester, led by Dr. Marcelo Lozada-Hidalgo and Prof. Andre Geim, report ultra-high spatial resolution measurements of proton transport through graphene and prove that perfect graphene crystals are permeable to protons. Unexpectedly, protons are strongly accelerated around nanoscale wrinkles and ripples in the crystal.

The discovery has the potential to accelerate the hydrogen economy. Expensive catalysts and membranes, sometimes with significant environmental footprint, currently used to generate and utilise hydrogen could be replaced with more sustainable 2D crystals, reducing carbon emissions, and contributing to Net Zero through the generation of green hydrogen.

The team used a technique known as scanning electrochemical cell microscopy (SECCM) to measure minute proton currents collected from nanometre-sized areas. This allowed the researchers to visualise the spatial distribution of proton currents through graphene membranes.

If proton transport took place through holes as some scientists speculated, the currents would be concentrated in a few isolated spots. No such isolated spots were found, which ruled out the presence of holes in the graphene membranes.

Drs. Segun Wahab and Enrico Daviddi, leading authors of the paper, commented: "We were surprised to see absolutely no defects in the graphene crystals. Our results provide microscopic proof that graphene is intrinsically permeable to protons."

Unexpectedly, the proton currents were found to be accelerated around nanometre-sized wrinkles in the crystals. The scientists found that this arises because the wrinkles effectively 'stretch' the graphene lattice, thus providing a larger space for protons to permeate through the pristine crystal lattice. This observation now reconciles the experiment and theory.

Dr. Lozada-Hidalgo said: "We are effectively stretching an atomic scale mesh and observing a higher current through the stretched interatomic spaces in this mesh - this is truly mind-boggling."

Prof. Unwin commented: "These results showcase SECCM, developed in our lab, as a powerful technique to obtain microscopic insights into electrochemical interfaces, which opens up exciting possibilities for the design of next-generation membranes and separators involving protons."

The authors are excited about the potential of this discovery to enable new hydrogen-based technologies. Dr. Lozada-Hidalgo said, "Exploiting the catalytic activity of ripples and wrinkles in 2D crystals is a fundamentally new way to accelerate ion transport and chemical reactions. This could lead to the development of low-cost catalysts for hydrogen-related technologies."

Research Report:Proton transport through nanoscale corrugations in two-dimensional crystals

Related Links
University of Warwick
All About Oil and Gas News at OilGasDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
OIL AND GAS
Ecuador votes to halt oil drilling in Amazon's Yasuni National Park
Quito (AFP) Aug 21, 2023
Ecuadorans have voted to stop an oil drilling project in an Amazon reserve, according to the results Monday of a referendum hailed as a historic example of climate democracy. Ecuador is one of eight nations sharing the Amazon basin, a vital carbon sink facing widespread destruction at a time when the world is grappling to curb climate change. Almost 59 percent of voters chose to halt the exploitation of an oil block in Yasuni National Park, one of the most diverse biospheres in the world. "T ... read more

OIL AND GAS
OIL AND GAS
Enjoying the Climb: Sols 3916-3918

Cracks in ancient Martian mud surprise Curiosity team

Engineers put a Mars lander legs to the test

Phoenix's Red Planet Selfie

OIL AND GAS
India hopes to be first nation to land on south pole of moon later this week

NASA's Lunar Trailblazer gets final payload water hunt

Chandrayaan-3 nears landing with successful orbital adjustments

Russia's Luna-25 probe enters Moon orbit

OIL AND GAS
NASA's Europa probe gets a hotline to Earth

All Eyes on the Ice Giants

Hundred-year storms? That's how long they last on Saturn.

Looking for Light with New Horizons

OIL AND GAS
Watch an exoplanet's 17-year journey around its star

Exoplanet surveyor Ariel passes major milestone

The oldest and fastest evolving moss in the world might not survive climate change

Chemical contamination on International Space Station is out of this world

OIL AND GAS
Elon Musk arrives in Japan for first visit since 2014

SpaceX launches another batch of Starlink satellites into space

China's Kuaizhou-1A rocket launches five new satellites

Pulsar Fusion forms partnership with University of Michigan for electric propulsion

OIL AND GAS
China to launch "Innovation X Scientific Flight" program, applications open worldwide

Scientists reveal blueprint of China's lunar water-ice probe mission

Shenzhou 15 crew share memorable moments from Tiangong Station mission

China's Space Station Opens Doors to Global Scientific Community

OIL AND GAS
NASA's $985 million Psyche mission to all-metal asteroid nears liftoff

Hera's mini-radar will probe asteroid's heart

Winchcombe meteorite is helping us to understand more about asteroids

A Banner Year For The Perseid Meteor Shower

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.