Space Travel News  
Graphene-Based Gadgets May Be Just Years Away

Graphene was discovered at The University of Manchester back in 2004, by Professor Andre Geim FRS and Royal Society Research Fellow Dr Kostya Novoselov. This incredible one-atom-thick gauze of carbon atoms, which resembles chicken wire, has quickly become one of the hottest topics in physics and materials science.
by Staff Writers
Manchester, UK (SPX) May 01, 2008
Researchers at The University of Manchester have produced tiny liquid crystal devices with electrodes made from graphene - an exciting development that could lead to computer and TV displays based on this technology.

Writing in the American Chemical Society's journal Nano Letters, Dr Kostya Novoselov and colleagues from The School of Physics and Astronomy and The School of Computer Science, report on the use of graphene as a transparent conductive coating for electro-optical devices - and show that its high transparency and low resistivity make it ideal for electrodes in liquid crystal devices.

Graphene was discovered at The University of Manchester back in 2004, by Professor Andre Geim FRS and Royal Society Research Fellow Dr Kostya Novoselov. This incredible one-atom-thick gauze of carbon atoms, which resembles chicken wire, has quickly become one of the hottest topics in physics and materials science.

"Graphene is only one atom thick, optically transparent, chemically inert, and an excellent conductor," says Dr Novoselov, from the Manchester research team.

"These properties seem to make this material an excellent candidate for applications in various electro-optical devices that require conducting but transparent thin films. We believe graphene should improve the durability and simplify the technology of potential electronic devices that interact with light."

Prof Geim said: "Transparent conducting films are an essential part of many gadgets including common liquid crystal displays (LCDs) for computers, TVs and mobile phones.

"The underlying technology uses thin metal-oxide films based on indium. But indium is becoming an increasingly expensive commodity and, moreover, its supply is expected to be exhausted within just 10 years.

"Forget about oil - our civilisation will first run out of indium. Scientists have an urgent task on their hands to find new types of conductive transparent films."

The Manchester research team has now demonstrated highly transparent and highly conductive ultra-thin films that can be produced cheaply by 'dissolving' chunks of graphite - an abundant natural resource - into graphene and then spraying the suspension onto a glass surface.

The resulting graphene-based films can be used in LCDs and, to prove the concept, the research team have demonstrated the first liquid crystal devices with graphene electrodes.

Dr Novoselov believes that there are only a few small, incremental steps remain for this technology to reach a mass production stage. "Graphene-based LCD products could appear in shops as soon as in a few years", he adds.

A research team from the Max Planck Institute for Polymer Research in Germany recently reported in Nano Letters how they had used graphene-based films to create transparent electrodes for solar cells (1).

But the German team used a different technology for obtaining graphene films, which involved several extra steps.

The Manchester team says the films they have developed are much simpler to produce, and they can be used not only in LCDs but also in solar cells.

Related Links
University of Manchester
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Boost For Green Plastics From Plants
Canberra, Australia (SPX) Apr 29, 2008
Australian researchers are a step closer to turning plants into 'biofactories' capable of producing oils which can be used to replace petrochemicals used to manufacture a range of products. Scientists working within the joint CSIRO/Grains Research and Development Corporation Crop Biofactories Initiative (CBI) have achieved a major advance by accumulating 30 per cent of an unusual fatty acid (UFA) in the model plant, Arabidopsis.







  • Queensland Uni And NASA Sign Hypersonic Propulsion Deal
  • Rocket Mystery Explained With New Imaging Technique
  • NASA Awards Contract For Engine Technology Development
  • SpaceX Conducts First Three-Engine Firing Of Falcon 9 Rocket

  • Khrunichev And ILS Announce Quality Initiative
  • Kalam Hails ISRO For Satellite Launch
  • Zenit Rocket Puts Israeli Satellite Into Orbit
  • Israeli communications satellite launched

  • Discovery Ready For Final Assembly And Checkout
  • NASA faces long odds in shuttle schedule
  • Hope Takes Flight On Shuttle Discovery
  • NASA reschedules shuttle launch date

  • US Congressional Subcommittee Examines The Status Of The ISS
  • Expedition 16's Whitson Hands Over Command Of Station
  • NASA Awards Space Station Water Contract To Hamilton Sundstrand
  • Russia Needs Billions More To Complete It's ISS Segment

  • Design Begins On Twin Probes That Will Study Radiation Belts
  • SKorea's first astronaut in hospital with back pain
  • NASA Officials Turn To Air Force For Guppy Evaluation
  • Mission To Space May Not Be A Manned One: ISRO

  • China Launches New Space Tracking Ship To Serve Shenzhou VII
  • Three Rocketeers For Shenzhou
  • China's space development can pose military threat: Japan
  • Cassini Tastes Organic Material At Saturn's Geyser Moon

  • Canada rejects sale of space firm to US defense firm
  • The Future Of Robotic Warfare Part Two
  • Robot anaesthetist developed in France: doctor
  • Surgeons use robots during heart surgery

  • New Online Map Reveals Evidence Of The Forces That Once Shaped Mars
  • Artificial Intelligence Boosts Science From Mars
  • Andrews Space Wins NASA Exploration Contract
  • Icy Active Mars

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement