![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() By Marlowe HOOD Paris (AFP) Aug 12, 2020
Tropical forest soil warmed in experiments to levels consistent with end-of-century temperature projections released 55 percent more CO2 than control plots, exposing a previously underestimated source of greenhouse gas emissions, researchers reported Wednesday. Before humanity began loading the atmosphere with carbon pollution by burning fossil fuels, the input and outflow of CO2 into soil -- one key element in Earth's complex carbon cycle -- remained roughly in balance. Gases emitted by deadwood and decaying leaves, in other words, were cancelled out by microorganisms that feed on such matter. But climate change has begun to upset that balance, according to a new study, published in Nature. "Carbon held in tropical soils is more sensitive to warming than previously recognised," lead author Andrew Nottingham, a researcher at the University of Edinburgh's School of Geosciences, told AFP. "Even a small increase in respiration from tropical forest soils could have a large effect on atmospheric CO2 concentrations, with consequences for global climate." The quantity of carbon cycling each year through soils worldwide is up to 10 times greater than human-generated greenhouse gas emissions. Just a one-percent imbalance -- with more carbon going out than in -- "would equal about ten percent of global anthropogenic (manmade) carbon emissions," noted Eric Davidson, a researcher at the University of Maryland Center for Environmental Science. Earth's average surface temperature has risen just over one degree Celsius (1C) above preindustrial levels, enough to boost the severity of droughts, heatwaves and superstorms made more destructive by rising seas. But the increase in temperatures over land alone -- excluding oceans, which cover 70 percent of the planet -- has been nearly 2C, or double the global average. - Carbon 'sink' to 'source' - In the experiments, Nottingham and colleagues placed heating rods in a one-hectare plot of undisturbed primary forest on Barro Colorado Island, Panama. They warmed the soil to a depth of just over one metre (three feet) by 4C over a period of two years. Soil temperature is usually about a degree warmer than air temperature. While such experiments have been conducted in higher latitude forests, none had been carried out up to now in the tropics. Climate models seeking to take into account the potential carbon leakage from soil due to rising temperatures have relied on theoretical calculations that underestimate outputs compared to the field tests reported in Nature. Extrapolating from the new findings, the study estimates that if all the world's tropical soils warmed by 4C for a two-year period some time before 2100, it would release 65 billion tonnes of carbon -- equivalent to about 240 billion tonnes of CO2 -- into the atmosphere. "That is more than six times the current annual emissions from human-related sources," Nottingham said. "This could be an underestimation, because we might see large continued loss beyond the two years in our experiment." Nor are deeper stores of carbon -- below two metres -- taken into account, he added. No sweeping conclusions can be drawn on the basis of a single experiment, the researchers caution. "But the study adds to recently accumulating evidence that tropical forests are unlikely to continue indefinitely to be carbon sinks as the world warms," said Davidson, who was not among the study's authors. Up to now, tree cover and the ocean have together consistently absorbed about half of the excess carbon emissions from human activity, but there are signs that some forests may be experiencing CO2 fatigue. Stored CO2 is also released when trees are cut down. Last year, a football pitch of primary, old-growth trees was destroyed every six seconds, about 38,000 square kilometres (14,500 square miles) in all, according to Global Forest Watch.
![]() ![]() New soil models may ease atmospheric CO2, climate change Ithaca NY (SPX) Aug 03, 2020 To remove carbon dioxide from the Earth's atmosphere in an effort to slow climate change, scientists must get their hands dirty and peek underground. In an article published July 27 in Nature Geoscience, Cornell University's Johannes Lehmann and others wrote that scientists should develop new models that more accurately reflect the carbon-storage processes beneath our feet, in order to effectively draw down atmospheric carbon dioxide. Carbon's journey into the soil is akin to a busy New York ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |