Space Travel News  
Gene Regulation, Not Just Genes, Is What Sets Humans Apart

The group looked at the regulatory sequences immediately adjacent to 6,280 genes on the DNA of chimps, humans and the rhesus macaque, a more distant primate relative that has 88 percent the same genes as humans. These regulatory stretches of DNA are where proteins bind to the genome to initiate a gene's function.
by Staff Writers
Durham NC (SPX) Aug 16, 2007
The striking differences between humans and chimps aren't so much in the genes we have, which are 99 percent the same, but in the way those genes are used, according to new research from a Duke University team. It's rather like the same set of notes being played in very different ways. In two major traits that set humans apart from chimps and other primates - those involving brains and diet - gene regulation, the complex cross-talk that governs when genes are turned on and off, appears to be significantly different.

"Positive selection, the process by which genetic changes that aid survival and reproduction spread throughout a species, has targeted the regulation of many genes known to be involved in the brain and nervous system and in nutrition," said Ralph Haygood, a post-doctoral fellow in the laboratory of Duke biology professor Gregory Wray.

Haygood is lead author in a report on the research to be published online on Sunday, Aug. 12, in the research journal Nature Genetics.

His group looked at the regulatory sequences immediately adjacent to 6,280 genes on the DNA of chimps, humans and the rhesus macaque, a more distant primate relative that has 88 percent the same genes as humans. These regulatory stretches of DNA are where proteins bind to the genome to initiate a gene's function. And it is here that evolution has apparently fine-tuned the performance of genes, Wray said, resulting in the dramatic differences in the human brain.

Though many studies have looked for significant differences in the coding regions of genes relating to neural system development and failed to find any, the Duke team believes this is the first study to take a genome-wide look at the evolution of regulatory sequences in different organisms.

Other studies have found significant differences between these species in the coding regions that govern the immune system, the sense of smell and the manufacture of sperm, but the coding regions of neural-related genes had shown very little sign of positive selection in these studies. Yet, as far back as 1975 when Mary-Claire King and Allan Wilson first said humans and chimps were 99 percent the same genetically, they had offered the suggestion that greater differences might be found in the regulatory regions.

The type of analysis performed by the Duke team couldn't be done until the macaque genome was published in 2005 because they needed a third, closely related relative to compare the regulatory sequences.

The mouse genome had been used as a reference point for comparing the coding sequences of humans and chimps, but the non-coding sequences have generally evolved much faster. "Mice wouldn't work for analyzing the non-coding sequences, because they're too different from humans and chimps," Haygood said.

While the biochemistry that cells use to turn food into energy is essentially the same across most animal species, the fine-tuning of how an organism deals with the different sorts of sugars and complex carbohydrates in its diet lies in the regulatory sequences, Wray said.

Chimps are fruit-eaters, for the most part, and would not last long away from their fruit-rich forest. The sugars in their diet are relatively simple to break down and convert to cellular fuel. Humans, on the other hand, eat a wider array of foods, including many the chimps would simply not be able to digest like starchy root crops. The researchers found dramatic differences in the regulatory regions of their genes for breaking down more complex carbohydrates. It may be that parts of the human metabolism are cranked up to digest carbs down to simpler sugars.

"Regulatory changes have adapted to changing circumstances without changing the essential chemistry of metabolism," Wray said. "This may set the stage for a more focused analysis of the human diet."

Much is being written and hypothesized about how dietary changes have contributed to the current human pandemics of obesity and diabetes, and perhaps there will be some insights from understanding how these regulatory sequences have evolved, he said.

To do a genome-wide analysis of regulatory regions, Haygood and post-doctoral fellow Olivier Fedrigo had to adapt some of the statistical tools used for genome-wide analysis of coding regions. To be sure their results would be robust, they focused on just the most reliably accurate published DNA sequences in common between the three animals, discarding two-thirds of the genome to ensure accuracy. "With only three species, we had to be very stringent about quality," Fedrigo said.

The researchers don't think these findings will be of any help resolving questions about how and when the ancestors of humans and chimps diverged on the tree of life, but it's safe to say that "most of this is ancient history," Wray said.

Related Links
Duke University
All About Human Beings and How We Got To Be Here



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


3-D Brain Centers Pinpointed
Leuven, Netherlands (SPX) Aug 08, 2007
In studies with monkeys, researchers have identified in detail the brain regions responsible for the unique ability of primates, including humans, to process visual 3D shapes to guide their sophisticated manipulation of objects. Specifically, the researchers delineated regions of the parietal cortex responsible for extracting 3D information by integrating disparities in information from the two eyes. Such integration is critical to perceiving three dimensions, because each eye receives only a two-dimensional projection of an image on the retina.







  • India Wants To Launch First Reusuable Space Launcher By 2010
  • NASA Awards First Stage Contract For Ares Rockets
  • UC Experts Detail New Standard For Cleaner Transportation Fuels
  • Indigenous Cryogenic Stage Tested For Eight Minutes

  • Ariane 5 - Third Dual-Payload Launch Of 2007
  • Lockheed Martin Marks 33rd Consecutive A2100 Success With The Launch Of BSAT-3A
  • ILS to Launch Inmarsat Satellite On Proton Vehicle Next Spring
  • Russian Proton-M Rocket To Launch Japanese Telecoms Satellite

  • NASA 'optimistic' no repair job needed on damaged shuttle tiles
  • NASA still mulling shuttle repair spacewalk
  • NASA weighs repair to shuttle, extends mission by 3 days
  • Damage to Endeavour appears less serious

  • Mastracchio And Williams Install New Station Control Moment Gyroscope (CMG)
  • Punctured astronaut's spacesuit cuts short spacewalk
  • Astronauts prepare for first spacewalk of Endeavour mission
  • Astronauts To Conduct Study Of Bacterial Growth In Space

  • ATK Receives To Develop And Support Test Flights For NASA's Ares I Crew Launch Vehicle First Stage
  • US teacher gives first lesson from space
  • NASA Issues Draft Environmental Impact Statement For Constellation Programme
  • Undersea Mission Aids Development Of Self-Test For Stress And Fatigue

  • At Least 3 Chinese Satellites Malfunctioning Since 2006
  • China reveals deadly threat to historic space flight
  • China Trains Rescue Teams For Third Manned Space Program
  • Chinese Astronauts Begin Training For Spacewalk

  • Drive-By-Wire And Human Behavior Systems Key To Virginia Tech Urban Challenge Vehicle
  • Successful Jules Verne Rendezvous Simulation At ATV Control Centre
  • Robotic Einstein Wows Spanish Technology Fair
  • Robotic Ankle For Amputees Is Developed

  • Phoenix Adjusts Course Successfully For Journey To Mars
  • What Makes Mars Magnetic
  • Helping Phoenix Land
  • Brighter Skies Lifts Rover Spirit As MER-A Gets Active

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement