Space Travel News  
Galaxies Near And Far From AKARI

The image shows the distribution of cold (blue) and warm (red) dust overlaid on the visible (green, showing distribution of stars) and far-ultraviolet (cyan, indicating the location of young stars) images of M101. Credits: Composite: JAXA, visible (green): the National Geographic Society, far-ultraviolet (cyan): GALEX/NASA
by Staff Writers
Tokyo, Japan (SPX) Sep 11, 2007
Two new sets of observations from the AKARI Infrared Space Telescope, JAXA mission with ESA participation, show how the spaceborne telescope has investigated galaxies both near and far. In the first set, Toyoaki Suzuki, University of Tokyo, observed M101, a spiral galaxy 170 000 light-years in diameter. AKARI's new observations reveal differing populations of stars spread across its spiral arms.

AKARI observed the galaxy at four infrared wavelengths (65, 90, 140, and 160 micrometres) using the Far-Infrared Surveyor (FIS) instrument. Many young high-temperature stars populate the spiral arms, revealing the areas of star formation and warming the interstellar dust. This causes the galaxy to shine at shorter infrared wavelengths. In contrast, the longer wavelengths show where the 'cold' dust is located. Normal stars, typically like our own Sun, warm this dust.

FIS data was compared to an image of the galaxy in the visible and far-ultraviolet. It shows that the warm dust is distributed along the spiral arms, with many hot spots located along the outer edge of the galaxy. These spots correspond to giant star-forming regions. This is unusual because star formation is generally more active in the central parts of spiral galaxies.

The evidence points to M101 having experienced a close encounter with a companion galaxy in the past, dragging out gas from the hapless companion. The gas is now falling onto the outer edge of M101 at approximately 150 km/s, triggering the active star formation.

AKARI has also been observing galaxies in the far distant Universe to address one of the most important questions in modern astronomy: how did the galaxies evolve into their current form?

To help find the answer, Shuji Matsuura and Mai Shirahata, ISAS/JAXA, used AKARI to carry out one of the most extensive observations ever made in the far-infrared, detecting many faint galaxies in the distant Universe at FIR's four wavebands. This wavelength information is essential to investigate the mechanisms responsible for the emission of infrared light and to estimate the distances to the galaxies.

The white spots in these images are all faint galaxies of different brightnesses. They imply that ordinary galaxies seen in the present time shone much more brightly in the infrared when they were younger. In many cases this is due to explosive episodes of star birth during earlier times. Some galaxies appear to have a differing brightness at different wavelengths than others and it is suspected that this might be because these galaxies are brightened by the energy released from a black hole at their cores.

The AKARI data shows that the number of galaxies increases rapidly as they appear fainter and so indicates that the galaxies have merged. However, they do not seem to evolve as drastically as inferred by previous observations. As AKARI's are the most sensitive observations ever made at these wavelengths, this result suggests that a new galaxy evolution model may be necessary.

Note for editors:

AKARI was launched on 21 February 2006 and began its scientific observations in May 2006.

Its on-board supply of liquid helium ran out on 26 August 2007, and the spacecraft entered a new mission phase. The liquid helium was required to keep AKARI cold enough to observe in the far-infrared. The 'warm' phase will now use the surviving instruments, which can operate under the warmer conditions provided by the on-board mechanical coolers, for near-infrared observations.

AKARI achieved its planned 'cold' lifetime of 550 days. During this time, it conducted an infrared All-Sky Survey, covering about 94 % of the entire sky, with larger wavelength coverage and better spatial resolution than its predecessor, IRAS. It has performed mid-infrared surveys and carried out more than five thousand individually pointed observations.

AKARI is a JAXA mission carried out with the participation of several partners such as: the Nagoya University, The University of Tokyo and National Astronomical Observatory Japan; the European Space Agency (ESA); Imperial College London, the University of Sussex and The Open University (UK); the University of Groningen/SRON (The Netherlands); the Seoul National University (Korea). The far-infrared detectors were developed under collaboration with the National Institute of Information and Communications Technology (Japan).

ESA's Operations Centre (ESOC) in Darmstadt, Germany, is providing the mission with ground support through its ground station in Kiruna, for several passes per day. ESA's European Space Astronomy Centre (ESAC), Madrid, Spain provides expertise and support for the sky-survey data processing through the pointing reconstruction - this allows the determination of accurate astronomical positions for each of the sources detected. The goal is to accelerate the production of the survey catalogues as a legacy for Herschel and Planck.

ESAC also provides user support for the European astronomers who have been granted observing opportunities. The 10% of observing time obtained from this collaboration resulted in 400 observations covering various fields of astronomy, from comets to cosmology. The Call for observing opportunities in the warm phase is expected for next Spring.

Related Links
AKARI
Space Telescope News and Technology at Skynightly.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


First Solar Dynamic Observatory Instrument Arrives At Goddard
Boulder CO (SPX) Sep 10, 2007
The University of Colorado at Boulder delivered the Extreme Ultraviolet Variability Experiment (EVE), first of three Solar Dynamic Observatory instruments, to NASA Goddard Space Flight Center, Greenbelt, Md. EVE will measure how much the sun's ultraviolet brightness changes. Rapid changes in the ultraviolet radiation of the sun can cause outages in radio communications and affect satellites orbiting the Earth.







  • Chinese Astronauts Test Traditional Chinese Medicines In Space
  • Ball Aerospace Presents Proposal For Ares I Crew Launch Vehicle Instrument Unit Avionics
  • Boeing Selected To Build NASA's Upper Stage For Ares I
  • Northrop Grumman Completes Acquisition of Scaled Composites

  • Russia To Launch UAE Spacecraft In 2008 From Baikonur
  • Indonesian Papua To Accommodate Russian Satellite's Launching In 2010
  • Russian Proton-M Rocket With Japanese Satellite Crashes On Launch
  • JCSAT-11 Satellite Ready For Launch From Baikonur

  • STS-120 To Deliver Harmony Node To ISS
  • NASA finds cracks on shuttle tanks
  • US shuttle makes textbook return landing
  • NASA looks to next US shuttle launch

  • Boeing Hardware Installed During Space Shuttle Endeavour Mission
  • Outside View: Obsolete space industry
  • Mastracchio And Williams Install New Station Control Moment Gyroscope (CMG)
  • Punctured astronaut's spacesuit cuts short spacewalk

  • More Teachers Get A Lesson In Weightlessness
  • World Space Expo At Kennedy Space Center Celebrates 50 Years In Space
  • Voyager At 30: Looking Beyond And Within
  • Bill Dana - Rocket Pilot

  • Mission To Moon Not A Race With Others
  • At Least 3 Chinese Satellites Malfunctioning Since 2006
  • China reveals deadly threat to historic space flight
  • China Trains Rescue Teams For Third Manned Space Program

  • Microsoft teams up in Japan to set robotics standards
  • Drive-By-Wire And Human Behavior Systems Key To Virginia Tech Urban Challenge Vehicle
  • Successful Jules Verne Rendezvous Simulation At ATV Control Centre
  • Robotic Einstein Wows Spanish Technology Fair

  • Mars Rovers Survive Severe Dust Storms Ready For Next Objectives
  • First Image From Phoenix Mars Lander Camera Received On Earth
  • Phoenix Mars Lander: Radar And Other Gear Pass Checkouts
  • Scientists And Space Enthusiasts Share Vision For Mars

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement