Space Travel News  
MILTECH
Future Army vehicles could see an improvement in structural materials
by Staff Writers
Aberdeen Proving Ground MD (SPX) Apr 16, 2020

Army researchers look at new structural materials for unmanned vehicles systems, such as the RQ-7B Shadow shown here, because these materials are less susceptible to corrosion, lightweight and have higher electrical conductivity than traditional elastomers.

Materials used for a Soldier's personal protection gear may be tough enough for vehicles too, according to a new Army study. Findings, released April 10 in the journal Polymer, show that polymers filled with carbon nanotubes could potentially improve how unmanned vehicles dissipate energy. A team led by the U.S. Army's Combat Capabilities Development Command's Army Research Laboratory is conducting theoretical research through computer modeling.

"Our motivation for this research is that there could potentially be a use, as matrix material, for incorporation into lightweight composites in unmanned vehicle systems," said Dr. Yelena R. Sliozberg, a computational materials scientist at the laboratory.

Researchers said polyurethanes are versatile materials used in a broad variety of applications, including coatings, foams and solid elastomers. As film adhesives, for example, they are commonly used as bonding agents between layers of glass and as polymer back layers in the transparent glass or plastic composites such as vision blocks on side windows used in the tactical vehicles. In particular, high-performance segmented PUU polymers exhibit versatile physical and mechanical properties.

In this research, the team used computer modeling to look into the nature of the materials.

Sliozberg said hierarchical composites are a promising area of research for the Army vehicles as they are less susceptible to corrosion, leading to early component death.

"In contrast to traditional thermoset composites performance poly(urethaneurea) elastomers are far less brittle and they offer unparalleled control over material architecture," Sliozberg said. "Carbon nanotube/polymer composites have desirable electrical and thermal characteristics that exhibits behaviors superior to conventional fiber materials."

Sliozberg said they need to have deeper understanding of the nature of molecular level interactions in these materials in order to enhance the maximum stress levels it can withstand and tailor energy dissipation mechanisms.

Chemical modification of nanofillers is nontrivial and typically diminish their properties by changing their structure and chemistry. For example, the Young modulus could be lower, she explained.

This team's results strongly indicate the effectiveness of incorporation of aligned carbon nanotubes for microstructure optimization of hierarchical PUU polymers in the matrix as well as at the interface without any filler surface modification, Sliozberg said.

"It shows that the presence of high affinity of poly(urethane-urea) to carbon nanotubes would lead to a novel green synthesis pathway without the need of any surface functionalization of nanotubes for fabrication of carbon nanotube reinforced poly(urethane-urea) nanocomposites hierarchical composites," she said.

Sliozberg's co-authors for the paper, "Dissipative particle dynamics simulation of microphase separation in polyurethane urea nanocomposites" are Jeffrey L. Gair Jr., Scinetics, Inc., and Dr. Alex J. Hsieh, from the lab's Institute for Soldier Nanotechnologies at the Massachusetts Institute of Technology.

Future Army vehicles could see an improvement in their structural materials since they are less susceptible to corrosion, lightweight and have higher electrical conductivity than traditional elastomers. The materials also show great potential to protect vehicles against static build-up and discharge and lightning strikes.

"Certain military vehicles such as Army helicopters must withstand intense vibration and fatigue and the conductive nature of these materials could lead to an unprecedented level of multifunctionality with potential in real-time structural health monitoring through embedded strain sensing and damage monitoring that will lead to safely and accurately assessing the remaining life in vehicle components," Sliozberg said.

Collaborators at Drexel University are furthering the research by investigating the potential uses of PUU polymers with carbon nanotubes as filament materials for 3-D printing. The laboratory is not currently conducting these studies on any vehicles. Researchers plan to collaborate with other Army teams for testing in the near future.

CCDC Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power.

Research paper


Related Links
US Army Research Laboratory
The latest in Military Technology for the 21st century at SpaceWar.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MILTECH
Amid COVID-19 hurdles, AFRL develops "jump kits" to rapidly enable operations
Rome NY (SPX) Apr 13, 2020
With vast numbers of businesses and organizations re-calibrating day-to-day operations, organizations across the Department of Defense and the intelligence community are adopting new technologies rapidly developed by the Air Force Research Laboratory to support critical operations amid the worldwide COVID-19 pandemic. The SecureView Program Office based out of AFRL's Information Directorate is working directly with other government programs to provide remote operators with secure access to classif ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILTECH
MILTECH
Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

NASA's Curiosity Keeps Rolling As Team Operates Rover From Home

MILTECH
ESA helps analyse untouched Moon rocks

China's Chang'e-4 probe resumes work for 17th lunar day

Moon dust and 3D printing will be standard for future lunar operations

Time-travelling ESA team explore a virtual Moon

MILTECH
New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

MILTECH
Astronomers discover planet that never was

CHEOPS space telescope ready for scientific operation

HD 158259 and it's six planets almost in rhythm

Simulating early ocean vents shows life's building blocks form under pressure

MILTECH
Can high-power microwaves reduce the launch cost of space-bound rockets?

Russia starts adapting RD-180 engine used in US for super-heavy Yenisei Rocket

Iran hails military satellite launch as US tensions simmer

NASA, SpaceX to Launch First Astronauts to Space Station from U.S. Since 2011

MILTECH
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

MILTECH
Hubble probes alien comet's chemical makeup

Interstellar comet Borisov likely comes from a red dwarf star

Fragmentation of Comet ATLAS observed on the First Crowd-Sourced Pictures from Citizen Astronomers

Impacts on Asteroids Produce Regolith, Erase Small Craters









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.