Subscribe free to our newsletters via your
. Space Travel News .




SOLAR DAILY
Funneling the sun's energy
by David L. Chandler, MIT News Office
Boston MA (SPX) Nov 27, 2012


File image.

The quest to harness a broader spectrum of sunlight's energy to produce electricity has taken a radically new turn, with the proposal of a "solar energy funnel" that takes advantage of materials under elastic strain.

"We're trying to use elastic strains to produce unprecedented properties," says Ju Li, an MIT professor and corresponding author of a paper describing the new solar-funnel concept that was published this week in the journal Nature Photonics.

In this case, the "funnel" is a metaphor: Electrons and their counterparts, holes - which are split off from atoms by the energy of photons - are driven to the center of the structure by electronic forces, not by gravity as in a household funnel. And yet, as it happens, the material actually does assume the shape of a funnel: It is a stretched sheet of vanishingly thin material, poked down at its center by a microscopic needle that indents the surface and produces a curved, funnel-like shape.

The pressure exerted by the needle imparts elastic strain, which increases toward the sheet's center. The varying strain changes the atomic structure just enough to "tune" different sections to different wavelengths of light - including not just visible light, but also some of the invisible spectrum, which accounts for much of sunlight's energy.

Li, who holds joint appointments as the Battelle Energy Alliance Professor of Nuclear Science and Engineering and as a professor of materials science and engineering, sees the manipulation of strain in materials as opening a whole new field of research.

Strain - defined as the pushing or pulling of a material into a different shape - can be either elastic or inelastic. Xiaofeng Qian, a postdoc in MIT's Department of Nuclear Science and Engineering who was a co-author of the paper, explains that elastic strain corresponds to stretched atomic bonds, while inelastic, or plastic, strain corresponds to broken or switched atomic bonds. A spring that is stretched and released is an example of elastic strain, whereas a piece of crumpled tinfoil is a case of plastic strain.

The new solar-funnel work uses precisely controlled elastic strain to govern electrons' potential in the material. The MIT team used computer modeling to determine the effects of the strain on a thin layer of molybdenum disulfide (MoS2), a material that can form a film just a single molecule (about six angstroms) thick.

It turns out that the elastic strain, and therefore the change that is induced in electrons' potential energy, changes with their distance from the funnel's center - much like the electron in a hydrogen atom, except this "artificial atom" is much larger in size and is two-dimensional. In the future, the researchers hope to carry out laboratory experiments to confirm the effect.

Unlike graphene, another prominent thin-film material, MoS2 is a natural semiconductor: It has a crucial characteristic, known as a bandgap, that allows it to be made into solar cells or integrated circuits. But unlike silicon, now used in most solar cells, placing the film under strain in the "solar energy funnel" configuration causes its bandgap to vary across the surface, so that different parts of it respond to different colors of light.

In an organic solar cell, the electron-hole pair, called an exciton, moves randomly through the material after being generated by photons, limiting the capacity for energy production. "It's a diffusion process," Qian says, "and it's very inefficient."

But in the solar funnel, he adds, the electronic characteristics of the material "leads them to the collection site [at the film's center], which should be more efficient for charge collection."

The convergence of four trends, Li says, "has opened up this elastic strain engineering field recently": the development of nanostructured materials, such as carbon nanotubes and MoS2, that are capable of retaining large amounts of elastic strain indefinitely; the development of the atomic force microscope and next-generation nanomechanical instruments, which impose force in a controlled manner; electron microscopy and synchrotron facilities, needed to directly measure the elastic strain field; and electronic-structure calculation methods for predicting the effects of elastic strain on a material's physical and chemical properties.

"People knew for a long time that by applying high pressure, you can induce huge changes in material properties," Li says. But more recent work has shown that controlling strain in different directions, such as shear and tension, can yield an enormous variety of properties.

One of the first commercial applications of elastic-strain engineering was the achievement, by IBM and Intel, of a 50 percent improvement in velocity of electrons simply by imparting a 1 percent elastic strain on nanoscale silicon channels in transistors.

The work was done with Ji Feng of Peking University and Cheng-Wei Huang, and was supported by the U.S. National Science Foundation, the U.S. Air Force Office of Scientific Research, and the National Natural Science Foundation of China.; A paper describing the new solar-funnel concept that was published this week in the journal Nature Photonics.

.


Related Links
MIT
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Renewable energy could power Australia
Sydney (UPI) Nov 26, 2012
Australia could be powered almost entirely by renewable energy in coming decades, says a new report. But the renewables expansion needs to be large and sustained with investment growth encouraged by policy certainty, says the report, "Generating a Renewable Australia" from the Climate Commission. The release of the report Monday in Sydney coincided with the opening of the U.N. Cl ... read more


SOLAR DAILY
Failure Of India's Big Rocket Project Is Symbolic Of Deep Structural Problems

Russian Briz-M puts US satellite into orbit

Pleiades 1B is ready for integration in the payload "stack" for Arianespace's next Soyuz mission

France, Germany compromise on Ariane launcher: minister

SOLAR DAILY
Fostering Curiosity: Mars Express relays rocky images

Matijevic Hill Survey Complete And Rover Passes 22 Miles Of Driving!

NASA monitors massive dust storm on Mars

Intrigue from Mars, or Grotzinger's silence

SOLAR DAILY
China's Chang'e-3 to land on moon next year

Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

SOLAR DAILY
Dwarf planet Makemake lacks atmosphere

Keck Observations Bring Weather Of Uranus Into Sharp Focus

At Pluto, Moons and Debris May Be Hazardous to New Horizons Spacecraft During Flyby

Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

SOLAR DAILY
Magnesium oxide: From Earth to super-Earth

Rare image of Super-Jupiter sheds light on planet formation

Astronomers Directly Image Massive Star's 'Super-Jupiter'

NASA's Kepler Wraps Prime Mission, Begins Extension

SOLAR DAILY
Researchers test novel power system for space travel

Secret mini-shuttle launch delayed

Supersonic Decelerator Project 'On Track' for Success

S. Korea rocket launch set for Nov 29

SOLAR DAILY
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

SOLAR DAILY
DARPA's Advanced Space Surveillance Telescope Could Be Looking Up From Down Under

Comet collisions every 6 seconds explain 17-year-old stellar mystery

NASA Radar Images Asteroid 2007 PA8

Ball Aerospace/B612 Foundation Sign Contract for Sentinel Mission




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement