Space Travel News  
SOLAR DAILY
Fullerenes bridge conductive gap in organic photovoltaics
by Staff Writers
Washington DC (SPX) Mar 28, 2019

file illustration only

Organic photovoltaics have achieved remarkably high efficiencies, but finding optimum combinations of materials for high-performance organic solar cells, which are also economically competitive, still presents a challenge. Researchers from the United States and China have now developed an innovative interlayer material to improve device stability and electrode performance. In the journal Angewandte Chemie, the authors describe their fullerene-spiked, readily processable ionene polymer, which boosts the power conversion efficiency of organic solar cells.

In contrast to common silicon-based solar cells, organic photovoltaics (OPVs) involve organic molecules in solar power generation. Materials in OPVs are abundant and processable, cheap and lightweight, and the modules can be made flexible and with tunable properties. The major disadvantage of such materials is that achieving longevity and high performance requires elaborate settings and architectures. Optimized combinations of materials that match the electrodes remain elusive.

Silver or gold metals form air-stable, processable cathodes, but they also lower the device potential. To overcome this problem, Yao Lui at Beijing University of Chemical Technology (China), and Thomas Russell and Todd Emrick at the University of Massachusetts, Amherst (USA), and their research groups, have developed a novel polymeric material to serve as an interlayer between the electrode and the active layer. This interlayer must be conductive and must lower the work function of the cathode by providing an interfacial dipole.

As an interlayer material, the researchers investigated a novel class of charged polymers, the ionene polymers. "Ionene polymers are polycations in which the charged moieties are positioned within the polymer backbone rather than as pendant groups," the authors explain. This leads to a higher charge distribution than in conventional cationic polymers, and in addition, better tunability. Ionene polymers provide a useful interfacial dipole, but alone, they lack the required conductivity.

Therefore, the authors included fullerenes in the structural framework of the polymer layer. So-called "bucky balls" - fullerene spheres made solely from carbon - are already used as common acceptor molecules in OPV devices. They are highly conductive and have many other favorable properties.

The scientists prepared the fullerene-ionene interlayer material by innovating on conventional step-growth polymerization chemistry with novel, functional monomers. They assembled the OPV devices and included an interlayer. The result was an impressive boost in power conversion efficiency - on average three-fold - when compared to devices without the interlayer. Efficiencies of over 10% point to further applicability of these modular devices. This work shows that a relatively simple modification to the composition of materials can improve the efficiency in organic electronics and can overcome intrinsic problems related to the combination of hard (electrodes) and soft (active-layered) materials.

Research paper


Related Links
Wiley
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
ELSI scientist constructs artificial photosynthetic cells
Tokyo, Japan (SPX) Mar 27, 2019
A team led by associate professor Yutetsu Kuruma of the Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology has constructed simple artificial cells that can produce chemical energy that helps synthesize parts of the cells themselves. This work marks an important milestone in constructing fully photosynthetic artificial cells, and may shed light on how primordial cells used sunlight as an energy source early in life's history. Scientists build artificial cells as models of primitiv ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
After the Moon in 2024, NASA wants to reach Mars by 2033

Scientists find likely source of methane on Mars

Mars Express matches methane spike measured by Curiosity

Results of BIOMEX, the Biology and Mars Experiment on the ISS

SOLAR DAILY
Lunar lander firm OrbitBeyond eyes Florida for new facility

US boots on the Moon in 2024? It won't be easy

URI researcher calculates temperature inside moon to help reveal its inner structure

ESA and NASA to team up on lunar science

SOLAR DAILY
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt

SOLAR DAILY
Surviving A Hostile Planet

Building blocks of DNA and RNA could have appeared together before life began on Earth

Exoplanet Under the Looking Glass

High School Senior Uncovers Potential for Hundreds of Earth-Like Planets in Kepler Data

SOLAR DAILY
China completes compatibility test on core parts of rocket engine

India launches PSLV-C45, with spysat and 28 microsats onboard

First 2019 Proton-M Rocket Launch From Baikonur Slated for May

Arianespace Flight VS22: A fifth launch for the operator SES and its O3b constellation

SOLAR DAILY
China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

China's lunar rover studies stones on moon's far side

SOLAR DAILY
Fossil 'mother lode' records Earth-shaking asteroid's impact: study

Making a dent: Japan probe prepares to blast asteroid

University of Hawaii team records self-destructing asteroid

Is Space Mining a Viable Future?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.