Subscribe free to our newsletters via your
. Space Travel News .




FARM NEWS
From aflatoxin to sake
by Staff Writers
Nashville TN (SPX) Jul 16, 2012


illustration only

What do beer, dogs and cats, and corn all have in common? All of them are the end products of the process of domestication. Almost everybody knows that a number of different animals and plants have been bred for qualities that benefit humans. But few people realize that a number of microbes have undergone a similar transformation.

Take brewer's yeast, for example. It is the quintessential ingredient in beer making: genetically altered to convert the sugars in malted barley into alcohol and to produce metabolic byproducts that give beer its unique taste. In fact, dozens of specialized strains of yeast produce the wide variety of beers, lagers and ales that brewers have developed.

"Although people don't often think about it, we haven't only domesticated animals and plants, but we have also domesticated dozens of different microbes," said Assistant Professor of Biological Sciences Antonis Rokas, adding that it's hard to imagine what life would be like without beer, wine, leavened bread, cheese, yoghurt, soy sauce, sauerkraut and a number of other mainstays of the human diet that are produced by domesticated microbes.

"The genetic basis for the domestication of many different plants and animals has been extensively studied, but, remarkably, very little is known about how domestication has shaped the genetic makeup of microbes," he said.

To begin filling this void, Rokas assembled a team of Vanderbilt researchers led by graduate student John Gibbons to chart a genome-wide profile of the genetic differences between strains of the domesticated fungus Aspergillus oryzae, which is used to make the rice wine sake, soy sauce and miso and its wild relative Aspergillus flavus. The results of their study were published online in the journal Current Biology on July 12.

The domesticated species A. oryzae is very closely related to the wild species A. flavus, with the two species having 99.5 percent of their genomes in common. By comparison, humans and chimpanzees share 99.0 percent of their genomes and the variation between individual humans is about 0.1 percent.

However, A. oryzae is non-toxic and generally regarded as safe by the U.S. Department of Agriculture. By contrast, A. flavus is a destructive agricultural pest of several important seed crops and produces the potent natural carcinogen aflatoxin.

In the production of sake, A. oryzae acts like a "cell factory" that converts the starch in milled rice to sugars with remarkable efficiency, which a second domesticated microbe, the brewer's yeast Saccharomyces cerevisiae transforms into alcohol.

The study found that A. oryzae was domesticated from an A. flavus-like ancestor, a process that involved extensive remodeling of the mold's genome. The researchers propose that the process began when early sake brewers in the Far East stumbled upon a strain of A. flavus that didn't produce aflatoxin.

Once inside the protected, food-rich environment that the brewers crafted for them, the fungi began adapting to it, undergoing changes in both the production of enzymes that break down starch into sugar and which provide the brewer's yeast the raw material for producing alcohol, and of secondary metabolites that the mold uses for additional functions like defense and protection.

These changes generally involved the "up-regulation" of its primary metabolism, allowing it to grow faster and produce more sugar and the "down-regulation" of its secondary metabolism so that, the researchers hypothesize, its products do not harm the yeast.

"Our data argue that over a few millennia sake brewers created conditions that selected for desired variations in the genetic makeup of Aspergillus flavus from the wild, resulting in the gradual accumulation of small- and large-scale genetic and functional changes that created Aspergillus oryzae," Gibbons said.

The study also suggests that there is a fundamental difference in the domestication process in microbes and that in animals and plants. Animal and plant breeding has largely been focused on altering genetic pathways that affect growth and form. By contrast, microbial domestication appears to center on altering metabolism, the set of processes that produce chemicals and energy.

"It's really too bad that people learn to fear microbes," said Rokas. "Their vast majority actually has a lot of beneficial uses."

Other members of the research team were graduate students Leonidas Salichos, David Rinker and Jonas King; post-doctoral fellows Jason Slot and Kriston McGary; Research Assistant Professor W. Hayes McDonald and Assistant Professor of Biomedical Informatics David Tabb. Maren Klich of the US Department of Agriculture also contributed to the study.

.


Related Links
Vanderbilt University
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
Down on the cacao farm: Sloths thrive at chocolate's source
Madison WI (SPX) Jul 13, 2012
Like many Neotropical fauna, sloths are running out of room to maneuver. As forests in South and Central America are cleared for agriculture and other human uses, populations of these arboreal leaf eaters, which depend on large trees for both food and refuge, can become isolated and at risk. But one type of sustainable agriculture, shade grown cacao plantations, a source of chocolate, could beco ... read more


FARM NEWS
SpaceX Completes Design Review of Dragon

Arianespace to launch Taranis satellite for CNES

SpaceX Dragon Utilizes Cooper Interconnect Non-Explosive Actuators

ILS Proton Launches SES-5 For SES

FARM NEWS
NASA Mars images 'next best thing to being there'

Life's molecules could lie within reach of Mars Curiosity rover

Final Six-Member Crew Selected for Mars Food Mission

Opportunity Celebratres 3,000 Martian Days of Operation on the Surface of Mars!

FARM NEWS
ESA to catch laser beam from Moon mission

Researchers Estimate Ice Content of Crater at Moon's South Pole

Researchers find evidence of ice content at the moon's south pole

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

FARM NEWS
Hubble Discovers a Fifth Moon Orbiting Pluto

Hubble telescope spots fifth moon near Pluto

New Horizons Doing Science in Its Sleep

It's a Sim: Out in Deep Space, New Horizons Practices the 2015 Pluto Encounter

FARM NEWS
Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

Study in Nature sheds new light on planet formation

New Instrument Sifts Through Starlight to Reveal New Worlds

FARM NEWS
Cella Energy Signs Fuel Source Deal with Kennedy Space Center

HI-C Sounding Rocket Mission Has Finest Mirrors Ever Made

XCOR Aerospace And Midland Development Corp Announce New Commercial Spaceflight Research Center

Rocketdyne Completes CCDev 2 Hot Fire Testing on Thruster for NASA Commercial Crew Program

FARM NEWS
Shenzhou mission sparks 'science fever'

China Beats Russia on Space Launches

China open to cooperation

China set to launch bigger space program

FARM NEWS
Planetary Resources Announces Agreement with Virgin Galactic for Payload Services

Explained: Near-miss asteroids

The B612 Foundation Announces The First Privately Funded Deep Space Mission

Ex-NASA astronauts aim to launch asteroid tracker




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement