![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Durham NC (SPX) May 27, 2020
Electrolysis, passing a current through water to break it into gaseous hydrogen and oxygen, could be a handy way to store excess energy from wind or solar power. The hydrogen can be stored and used as fuel later, when the sun is down or the winds are calm. Unfortunately, without some kind of affordable energy storage like this, billions of watts of renewable energy are wasted each year. For hydrogen to be the solution to the storage problem, water-splitting electrolysis would have to be much more affordable and efficient, said Ben Wiley, a professor of chemistry at Duke University. And he and his team have some ideas about how to accomplish that. Wiley and his lab recently tested three new materials that might be used as a porous, flow-through electrode to improve the efficiency of electrolysis. Their goal was to increase the surface area of the electrode for reactions, while avoiding trapping the gas bubbles that are produced. "The maximum rate at which hydrogen is produced is limited by the bubbles blocking the electrode - literally blocking the water from getting to the surface and splitting," Wiley said. In a paper appearing May 25 in Advanced Energy Materials, they compared three different configurations of a porous electrode through which the alkaline water can flow as the reaction occurs. They fabricated three kinds of flow-through electrodes, each a 4 millimeter square of sponge-like material, just a millimeter thick. One was made of a nickel foam, one was a 'felt' made of nickel microfibers, and the third was a felt made of nickel-copper nanowires. Pulsing current through the electrodes for five minutes on, five minutes off, they found that the felt made of nickel-copper nanowires initially produced hydrogen more efficiently because it had a greater surface area than the other two materials. But within 30 seconds, its efficiency plunged because the material got clogged with bubbles. The nickel foam electrode was best at letting the bubbles escape, but it had a significantly lower surface area than the other two electrodes, making it less productive. The sweet spot turned out to be a felt of nickel microfiber that produced more hydrogen than the nanowire felt, despite having 25 percent less surface area for the reaction. Over the course of a 100-hour test, the microfiber felt produced hydrogen at a current density of 25,000 milliamps per square centimeter. At that rate, it would be 50 times more productive than the conventional alkaline electrolyzers currently in use for water electrolysis, the researchers calculated. The cheapest way to make industrial quantities of hydrogen right now isn't by splitting water, but by breaking natural gas (methane) apart with very hot steam - an energy-intensive approach that creates 9 to 12 tons of C02 for every ton of hydrogen it yields, not including the energy needed to create 1000-degree Celsius steam. Wiley said commercial producers of water electrolyzers may be able to make improvements in the structure of their electrodes based on what his team has learned. If they could greatly increase the hydrogen production rate, the cost of hydrogen produced from splitting water could go down, perhaps even enough to make it an affordable storage solution for renewable energy. He is also working with a group of students in Duke's Bass Connections program who are exploring whether flow-through electrolysis might be scaled up to make hydrogen from India's abundant solar power.
Research Report: "Alkaline Water Electrolysis at 25 A cm-2 with a Microfibrous Flow-through Electrode"
![]() ![]() Can oilfield water safely be reused for irrigation in California Durham NC (SPX) May 25, 2020 A new study by researchers at Duke University and RTI International finds that reusing oilfield water that's been mixed with surface water to irrigate farms in the Cawelo Water District of California's Kern County does not pose major health risks, as some opponents of the practice have feared. "We did not find any major water quality issues, nor metals and radioactivity accumulation in soil and crops, that might cause health concerns," said Avner Vengosh, professor of water quality and geochemistr ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |