. Space Travel News .




.
ICE WORLD
Extreme Melting on Greenland Ice Sheet
by Staff Writers
New York NY (SPX) Oct 26, 2011

This lost melt water can accelerate the ice sheet's slide toward the sea where it calves new icebergs. Eventually, melt water reaches the ocean, contributing to the rising sea levels associated with long-term climate change.

The Greenland ice sheet can experience extreme melting even when temperatures don't hit record highs, according to a new analysis by Dr. Marco Tedesco, assistant professor in the Department of Earth and Atmospheric Sciences at The City College of New York. His findings suggest that glaciers could undergo a self-amplifying cycle of melting and warming that would be difficult to halt.

"We are finding that even if you don't have record-breaking highs, as long as warm temperatures persist you can get record-breaking melting because of positive feedback mechanisms," said Professor Tedesco, who directs CCNY's Cryospheric Processes Laboratory and also serves on CUNY Graduate Center doctoral faculty.

Professor Tedesco and his team collected data for the analysis this past summer during a four-week expedition to the Jakobshavn Isbrae glacier in western Greenland. Their arrival preceded the onset of the melt season.

Combining data gathered on the ground with microwave satellite recordings and the output from a model of the ice sheet, he and graduate student Patrick Alexander found a near-record loss of snow and ice this year. The extensive melting continued even without last year's record highs.

The team recorded data on air temperatures, wind speed, exposed ice and its movement, the emergence of streams and lakes of melt water on the surface, and the water's eventual draining away beneath the glacier.

This lost melt water can accelerate the ice sheet's slide toward the sea where it calves new icebergs. Eventually, melt water reaches the ocean, contributing to the rising sea levels associated with long-term climate change.

The model showed that melting between June and August was well above the average for 1979 to 2010. In fact, melting in 2011 was the third most extensive since 1979, lagging behind only 2010 and 2007. The "mass balance", or amount of snow gained minus the snow and ice that melted away, ended up tying last year's record values.

Temperatures and an albedo feedback mechanism accounted for the record losses, Professor Tedesco explained. "Albedo" describes the amount of solar energy absorbed by the surface (e.g. snow, slush, or patches of exposed ice). A white blanket of snow reflects much of the sun's energy and thus has a high albedo. Bare ice - being darker and absorbing more light and energy - has a lower albedo.

But absorbing more energy from the sun also means that darker patches warm up faster, just like the blacktop of a road in the summer. The more they warm, the faster they melt.

And a year that follows one with record high temperatures can have more dark ice just below the surface, ready to warm and melt as soon as temperatures begin to rise. This also explains why more ice sheet melting can occur even though temperatures did not break records.

Professor Tedesco likens the melting process to a speeding steam locomotive. Higher temperatures act like coal shoveled into the boiler, increasing the pace of melting. In this scenario, "lower albedo is a downhill slope," he says. The darker surfaces collect more heat. In this situation, even without more coal shoveled into the boiler, as a train heads downhill, it gains speed. In other words, melting accelerates.

Only new falling snow puts the brakes on the process, covering the darker ice in a reflective blanket, Professor Tedesco says. The model showed that this year's snowfall couldn't compensate for melting in previous years. "The process never slowed down as much as it had in the past," he explained. "The brakes engaged only every now and again."

The team's observations indicate that the process was not limited to the glacier they visited; it is a large-scale effect. "It's a sign that not only do albedo and other variables play a role in acceleration of melting, but that this acceleration is happening in many places all over Greenland," he cautioned.

"We are currently trying to understand if this is a trend or will become one. This will help us to improve models projecting future melting scenarios and predict how they might evolve."

Additional expedition team members included Christine Foreman of Montana State University, and Ian Willis and Alison Banwell of the Scott Polar Research Institute, Cambridge, UK.

Professor Tedesco and his team provide their preliminary results on the Cryospheric Processes Laboratory webpage. They will will be presenting further results at the American Geophysical Union Society (AGU) meeting in San Francisco on December 5 at 9 a.m. and December 6 at 11:35 a.m.

Related Links
2011 Melting in Greenland report
Cryospheric Processes Laboratory
Beyond the Ice Age




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ICE WORLD
China's glaciers in meltdown mode: study
Paris (AFP) Oct 25, 2011
Sharp increases in temperature driven by global warming are melting China's Himalayan glaciers, an impact that threatens habitats, tourism and economic development, says a study released Tuesday. Of 111 weather stations scattered across southwestern China, 77 percent showed significant upticks in temperatures between 1961 and 2008, according to the study, published in a British peer-reviewed ... read more


ICE WORLD
SpaceX Completes Key Milestone to Fly Astronauts to International Space Station

ILS Proton Launches ViaSat-1 for ViaSat

Final checks for first Soyuz launch from Kourou

Soyuz is put through its paces for Thursday's launch

ICE WORLD
Scientists develope new way to determine when water was present on Mars and Earth

Mars Rover Carries Device for Underground Scouting

Mars Landing-Site Specialist

New Mystery on Mars's Forgotten Plains

ICE WORLD
Lunar Probe to search for water on Moon

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

ICE WORLD
Dwarf planet may not be bigger than Pluto

Series of bumps sent Uranus into its sideways spin

Mission to Mysterious Uranus

Spinning hourglass object may be the first of many to be discovered in the Kuiper belt

ICE WORLD
UH Astronomer Finds Planet in the Process of Forming

Nearby planet-forming disk holds water for thousands of oceans

Herschel discovers tip of cosmic iceberg around nearby young star

NASA's Spitzer Detects Comet Storm In Nearby Solar System

ICE WORLD
The Spark Of A New Era Was A Blast For Rocket Science

Caltech Event Marks 75th Anniversary of JPL Rocket Tests

Russia puts new Rus-M carrier rocket project on hold

Russia to abandon rocket booster work

ICE WORLD
China's first space lab module in good condition

Takeoff For Tiangong

Snafu as China space launch set to US patriotic song

Civilians given chance to reach for the stars

ICE WORLD
Researchers Explain the Formation of Scheila's Unusual Triple Dust Tails

Formation of Scheila's Triple Dust Tails Explained

NASA's Dawn Science Team Presents Early Science Results

Amateur skywatchers help space hazards team


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement