Space Travel News  
SOLAR SCIENCE
Experiment Hurtled Into Aurora Above Norway By NASA Rocket

A shot of the December 12 RENU launch taken from downtown Andenes, Norway. Photo by Kolbjorn Blix Dahle, Andoya Rocket Range.
by Staff Writers
Durham NH (SPX) Dec 17, 2010
A team of scientists led by Marc Lessard of the University of New Hampshire Space Science Center launched an instrument-laden, four-stage sounding rocket from Norway's Andoya Rocket Range into aurora about 200 miles above Earth early Sunday morning (Dec. 12, 2010), just before the two-week launch window slammed shut.

For the 10-minute flight, a 65-foot-long Black Brant XII rocket arced through a funnel-shaped region of Earth's magnetic field lines before landing some 900 miles downrange in the Norwegian Sea. The science data were transmitted to a ground station during the short flight.

Funded by the National Aeronautics and Space Administration (NASA), the Rocket Experiment for Neutral Upwelling, or RENU, aimed to measure the complex, underlying physics behind the phenomena of "satellite drag.

The launch required conditions that enhance the transfer of solar wind energy to Earth's magnetic field and, eventually, into our atmosphere to create the stunning northern lights or aurora. With the Sun becoming increasingly active after an unusually long quiet cycle, the researchers were banking that aurora would occur to allow a launch during the November 28 - December 12 window.

Neutral upwelling has been known to exist since the earliest days of the space program when observers noted increased "drag" on Earth-orbiting satellites during periods of solar activity. At the time, the effect was largely attributed to a complex heating process that causes the upper part of the Earth's atmosphere, or thermosphere, to swell up horizontally on a scale of hundreds of kilometers.

More recent observations have shown that neutral upwelling can also occur on much smaller scales and more localized in the cusp region - two "funnels" of magnetic field lines that allow a small amount of solar wind to reach the top of the atmosphere and produce the auroral glow. This upwelling process is more vertical in nature and appears to be associated with auroral processes.

The RENU instrument payload was designed to take an array of measurements, including those for neutral gas, electric and magnetic fields, and precipitating particles, and the new data acquired during the flight will provide information essential for the advancement of understanding the process. The launch location in the far northern polar region was chosen so that the experiment could take place in total darkness.

Although the effect of satellite drag can negatively impact a spacecraft's orbit over time, which is a concern for certain low-orbit, strategic satellites, Lessard stresses this was not the primary motivation for the experiment.

"From NASA's point of view this is a mission of pure science, we're trying to understand the processes behind neutral upwelling and how it is associated with visible aurora phenomena," says Lessard, associate professor at the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and department of physics.

He adds that RENU is taking a new scientific approach and is attempting to test, measure, and quantify "electron precipitation" that brings energetic particles down from high above the Earth and delivers energy into the upper atmosphere via Earth's magnetic field lines.

"This is the first time anyone has tried to measure these neutral particle enhancements at these altitudes and with this combination of instruments," Lessard says. He adds that it appears the team was successful in getting the rocket to transit a region of neutral density enhancement but because so much data is gathered during rocket launches (unlike satellites, vast amounts of data can be transmitted quickly back to Earth) it could take months to analyze the results.

The team of investigators also includes colleagues from the Aerospace Corporation, Dartmouth College, Cornell University, the U.S. Air Force Academy, NASA's Goddard Space Flight Center, and other collaborators, including those at the Kjell Henriksen Observatory (KHO), which is operated by the University Center of Svalbard.

An array of ground-based instrumentation located at KHO in the northernmost part of Norway complemented the rocket measurements. The data will be used to quantify neutral density enhancement, or regions of higher neutral atom density, and will also be used by theorists on the team to run mathematical models to gain insight into the heating and precipitation processes. Notes Lessard, "The instrumentation and science support provided from our colleagues at KHO has been invaluable."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of New Hampshire
Solar Science News at SpaceDaily



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


SOLAR SCIENCE
Colliding Auroras Produce Explosions Of Light
Huntsville AL (SPX) Dec 18, 2009
A network of cameras deployed around the Arctic in support of NASA's THEMIS mission has made a startling discovery about the Northern Lights. Sometimes, vast curtains of aurora borealis collide, producing spectacular outbursts of light. Movies of the phenomenon were unveiled at the Fall meeting of the American Geophysical Union in San Francisco. "Our jaws dropped when we saw the movies for ... read more







SOLAR SCIENCE
ISRO Puts Off GSLV Launch

Arianespace To Launch ESA's First Sentinel Satellite

ISRO Set To Launch Heaviest Satellite For Telecom And TV

The Flight Of The Dragon

SOLAR SCIENCE
Wind And Water Have Shaped Schiaparelli On Mars

The Three Ages Of Mars

Odyssey Orbiter Nears Martian Longevity Record

Drilling For The Future Of Science

SOLAR SCIENCE
NASA's LRO Creating Unprecedented Topographic Map Of Moon

Total Lunar Eclipse: 'Up All Night' With NASA

Robotic Excavations Could Help Get Helium 3 From Moon To Earth

A Softer Landing on the Moon

SOLAR SCIENCE
Mission To Pluto And Beyond Marks 10 Years Since Project Inception

Kuiper Belt Of Many Colors

Reaching The Mid-Mission Milestone On The Way To Pluto

New Horizons Student Dust Counter Instrument Breaks Distance Record

SOLAR SCIENCE
Citizen Scientists Join Search For Earth-Like Planets

Qatar-Led International Team Finds Its First Alien World

Planetary Family Portrait Reveals Another Exoplanet

New Pictures Show Fourth Planet In Giant Version Of Our Solar System

SOLAR SCIENCE
Orbital Test Fires First Stage Engine For Taurus II Rocket

Fuel error cost Russia three navigation satellites: official

Brazil launches rocket into suborbit

New JPL Workers Shed Training Wheels For Rocket Launch

SOLAR SCIENCE
China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

Optis Software To Optimize Chinese Satellite Design

SOLAR SCIENCE
Asteroid's Coat Of Many Colors

NASA Discovers Asteroid Delivered Assortment Of Meteorites

Research Points To Better Understanding Of Carbon In Comets

MegaPhase RF Cables Enable Conclusion Of Seven-Year Deep Space Program


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement