Space Travel News  
SOLAR DAILY
Expanding wavelength range for solar energy conversion
by Staff Writers
Fukuoka, Japan (SPX) Nov 21, 2017


This is an image of near-infrared-light-driven hydrogen evolution from water photo-driven by triruthenium photosensitizer.

Hydrogen gas is a promising "green" fuel. The lightest chemical element, hydrogen is an efficient energy store and could potentially replace gasoline in vehicles. However, the element does not exist in large amounts in nature, and must be produced artificially.

Hydrogen can be produced by splitting water (H2O) into hydrogen (H2) and oxygen (O2). There are many ways to do this, but among the cleanest - hence most attractive - is using solar cells. These devices capture the energy of sunlight to drive the water-splitting reaction.

Sunlight comes in a spectrum, with each color having a different wavelength. Solar cells must absorb light of particular wavelengths, depending on how much energy the cell needs to drive the reaction.

The more of the spectrum it captures, the more hydrogen it produces. Unfortunately, most cells only absorb shorter wavelengths of light, corresponding to the higher energy region of visible light below the red light domain. This means that while colors such as blue and green light can be used, the rest is wasted.

Now, researchers at Kyushu University in Japan and its Institute for Carbon-Neutral Energy Research (I2CNER) have potentially solved this problem. They invented a device driven by near-infrared (NIR) light - the part of the spectrum, invisible to the naked eye, with wavelengths longer than visible red light.

Thus, they enabled a broader spectrum of light, including UV, visible, and NIR, to be harvested. Their design cleverly exploits the chemistry of ruthenium, a heavy metal related to iron. Their achievement was reported in Angewandte Chemie International Edition.

Particular metal-organic hybrid materials are good at capturing light, which helps their electrons to "jump" into orbitals in the organic parts of the materials attached to the metal center.

In solar cells, this is the first step in producing hydrogen, since electrons are the drivers of chemistry. However, the jump between orbitals is usually so big that only UV and the higher energy region of visible light have enough energy to stimulate it. Red, NIR, and even longer IR light are simply reflected back or pass through the devices, and their energy remains unused.

The Kyushu design is different. "We introduced new electron orbitals into the ruthenium atoms," study corresponding author Professor Ken Sakai explains. "It's like adding rungs to a ladder - now the electrons in ruthenium don't have so far to jump, so they can use lower energies of light such as red and NIR. This nearly doubles the amount of sunlight photons we can harvest."

The trick is to use an organic compound - hexagonal rings of carbon and nitrogen - to link three metal atoms into a single molecule. In fact, this not only creates these new "rungs" - hence the ability to use red and NIR light - but also makes the reaction more efficient due to spatial expansion of the light harvesting part of the molecule. Thus, the production of hydrogen is accelerated.

"It's taken decades of efforts worldwide, but we've finally managed to drive water reduction to evolve H2 using NIR," Sakai says. "We hope this is just the beginning - the more we understand the chemistry, the better we can design devices to make clean, hydrogen-based energy storage a commercial reality."

The article, "Near-Infrared-Light-Driven Hydrogen Evolution from Water using a Polypyridyl Triruthenium Photosensitizer", was published in Angewandte Chemie International Edition at DOI:10.1002/anie.201708996

SOLAR DAILY
Pine and poplar wood improve sunlight-driven water purification
Washington DC (SPX) Nov 17, 2017
Engineers at the University of Maryland have found that porous types of wood from trees like poplar and pine can greatly increase the efficiency of water-to-steam conversion under sunlight. The findings, published November 15 in the journal Joule, could be used in a simple and inexpensive biodegradable device for water purification. "I think there are many, many materials that can be used ... read more

Related Links
Kyushu University, I2CNER
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Winds Blow Dust off the Solar Panels Improving Energy Levels

Recurring Martian Streaks: Flowing Sand, Not Water?

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

NASA Selects Instrument for Future International Mission to Martian Moons

SOLAR DAILY
Russia tests new spaceship set to deliver people, cargo to moon

NASA Team Studies CubeSat Mission to Measure Water on the Moon

China and the US are both shooting for the moon

Russia locks up six for Moon flight simulation

SOLAR DAILY
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

SOLAR DAILY
Lava or Not, Exoplanet 55 Cancri e Likely to have Atmosphere

Images of strange solar system visitor peel away some of the mystery

Familiar-Looking Messenger from Another Solar System

Space dust may transport life between worlds, research suggests

SOLAR DAILY
Aerojet Rocketdyne supports ULA Delta II launch of JPSS-1

Old Rivals India, China Nurture New Rivalry in Satellite Launch Business

NASA launches next-generation weather satellite

SpaceX postpones launch of secretive Zuma mission

SOLAR DAILY
China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

SOLAR DAILY
Russian Astronomers Show Big Asteroid Approaching the Earth

ESO observations show first interstellar asteroid is like nothing seen before

First observed interstellar visitor dazzles scientists

Unlucky dinosaurs: Scientists say asteroid had 13 percent chance of triggering extinction









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.