Subscribe free to our newsletters via your
. Space Travel News .




EPIDEMICS
Evolution in the blink of an eye
by Staff Writers
Ithaca NY (SPX) May 30, 2013


The House Finch is native to the Southwest but has spread to towns and backyards across North America. The bacteria is not harmful to humans, which makes it a good model for studying the evolution of dangerous diseases such as SARS, Ebola, and avian flu.

A novel disease in songbirds has rapidly evolved to become more harmful to its host on at least two separate occasions in just two decades, according to a new study. The research provides a real-life model to help understand how diseases that threaten humans can be expected to change in virulence as they emerge.

"Everybody who's had the flu has probably wondered at some point, 'Why do I feel so bad?'" said Dana Hawley of Virginia Tech, the lead author of the study to be published in PLOS Biology on May 28, 2013.

"That's what we're studying: Why do pathogens cause harm to the very hosts they depend on? And why are some life-threatening, while others only give you the sniffles?"

Disease virulence is something of a paradox. In order to spread, viruses and bacteria have to reproduce in great numbers. But as their numbers increase inside a host's body, the host gets more and more ill.

So a highly virulent disease runs the risk of killing or debilitating its hosts before they get a chance to pass the bug along. It finds the right balance through evolution, and the new study shows it can happen in just a few years.

Hawley and her coauthors studied House Finch eye disease, a form of conjunctivitis, or pinkeye, caused by the bacteria Mycoplasma gallisepticum. It first appeared around Washington, D.C., in the 1990s.

The House Finch is native to the Southwest but has spread to towns and backyards across North America. The bacteria is not harmful to humans, which makes it a good model for studying the evolution of dangerous diseases such as SARS, Ebola, and avian flu.

"There's an expectation that a very virulent disease like this one will become milder over time, to improve its ability to spread. Otherwise, it just kills the host and that's the end of it for the organism," said Andre Dhondt, director of Bird Population Studies at the Cornell Lab of Ornithology and a coauthor of the study.

"House Finch eye disease gave us an opportunity to test this-and we were surprised to see it actually become worse rather than milder."

The researchers used frozen bacterial samples taken from sick birds in California and the Eastern Seaboard at five dates between 1994 and 2010, as the pathogen was evolving and spreading.

The samples came from an archive maintained by coauthor David Ley of North Carolina State University, who first isolated and identified the causative organism.

The team experimentally infected wild-caught House Finches, allowing them to measure how sick the birds got with each sample. They kept the birds in cages as they fell ill and then recovered (none of the birds died from the disease).

Contrary to expectations, they found that in both regions the disease had evolved to become more virulent over time. Birds exposed to later disease strains developed more swollen eyes that took longer to heal.

In another intriguing finding, it was a less-virulent strain that spread westward across the continent. Once established in California, the bacteria again began evolving higher virulence.

In evolutionary terms, some strains of the bacteria were better adapted to spreading across the continent, while others were more suited to becoming established in one spot. "For the disease to disperse westward, a sick bird has to fly a little farther, and survive for longer, to pass on the infection.

That will select for strains that make the birds less sick," Hawley said. "But when it gets established in a new location, there are lots of other potential hosts, especially around bird feeders. It can evolve toward being a nastier illness because it's getting transmitted more quickly."

House Finch eye disease was first observed in 1994 when bird watchers reported birds with weepy, inflamed eyes to Project FeederWatch, a citizen science study run by the Cornell Lab. Though the disease does not kill birds directly, it weakens them and makes them easy targets for predators.

The disease quickly spread south along the Eastern Seaboard, north and west across the Great Plains, and down the West Coast. By 1998 the House Finch population in the eastern United States had dropped by half-a loss of an estimated 40 million birds.

.


Related Links
Cornell University
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EPIDEMICS
Scientists find chemical that causes 'kidney' failure in mosquitoes
Wooster OH (SPX) May 30, 2013
An Ohio State University researcher and his collaborators have discovered a chemical that causes "kidney" failure in mosquitoes, which may pave the way to the development of new insecticides to fight deadly mosquito-transmitted diseases such as malaria and dengue fever. The discovery is reported in the online journal PLOS ONE. "Our team has found a chemical that interferes with the f ... read more


EPIDEMICS
First Light Angara Rocket Ready for Launch

Russia to launch 12 Proton-M rockets in 2013

Russian Spacecraft Manufacturer to Make Four Launches in 2014

Electric Propulsion

EPIDEMICS
Radiation on trip to Mars near lifetime limit

Opportunity Departing 'Cape York'

Bacterium from Canadian High Arctic and life on Mars

Curiosity Drills Second Rock Target

EPIDEMICS
Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

Moon being pushed away from Earth faster than ever

Bright Explosion on the Moon

EPIDEMICS
Planning Accelerates For Pluto Encounter

'Vulcan' wins Pluto moon name vote

Public to vote on names for Pluto moons

The PI's Perspective: The Seven-Year Itch

EPIDEMICS
Big Weather on Hot Jupiters

Critical Kepler Reaction Wheel Fails: Mission End In Sight

Sifting Through the Atmosphere's of Far-Off Worlds

New Method of Finding Planets Scores its First Discovery

EPIDEMICS
Girl expelled from school for exploding experiment going to space camp

New method for producing clean hydrogen

Adapter 'Flips' for Progress Toward 2014 Exploration Flight Test

ATK Hoping Tp Clean Up Rocketscience

EPIDEMICS
Shopping for Shenzhou

Waiting for Shenzhou 10

China launches communications satellite

On Course for Shenzhou 10

EPIDEMICS
NASA's WISE Mission Finds Lost Asteroid Family Members

Asteroid Sample Return Mission Moves into Development

Asteroid 1998 QE2 To Sail Past Earth Nine Times Larger Than Cruise Ship

NASA's Asteroid Sample Return Mission Moves into Development




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement