Space Travel News  
SOLAR DAILY
Engineering next generation solar powered batteries
by Staff Writers
Mumbai, India (SPX) Jan 01, 2022

Schematic of Solar Battery Charging Process and a photograph of charging the solar battery using a green low power LED.

Secondary batteries, such as lithium ion batteries, need to be recharged once the stored energy is used up. In a bid to decrease our dependence on fossil fuels, scientists have been exploring sustainable ways to recharge secondary batteries. Recently, Amar Kumar (graduate student at T. N. Narayanan's lab in TIFR Hyderabad) and his colleagues have assembled a compact lithium ion battery with photosensitive materials that can be directly recharged with solar energy.

Initial efforts to channel solar energy to recharge batteries employed the use of photovoltaic cells and batteries as separate entities. Solar energy is converted by photovoltaic cells into electrical energy that is consequently stored as chemical energy in batteries. The energy stored in these batteries is then used to power the electronic devices.

This relay of energy from one component to the other, for example, from the photovoltaic cell to the battery, leads to some loss in energy. To prevent energy loss, there was a shift towards exploring the use of photosensitive components inside a battery itself. There has been substantial progress in integrating photosensitive components within a battery resulting in the formation of more compact solar batteries.

Though improved in design, existing solar batteries still have some drawbacks. A few of these disadvantages associated with various types of solar batteries include: decreased ability to harness enough solar energy, use of organic electrolyte that may corrode the photosensitive organic component inside a battery, and formation of side products that hinder sustained performance of a battery in the long term.

In this study, Amar Kumar decided to explore new photosensitive materials which can also incorporate lithium and build a solar battery that would be leak-proof and operate efficiently in ambient conditions.

Solar batteries which have two electrodes usually include a photosensitive dye in one of the electrodes physically mixed with a stabilising component which helps drive the flow of electrons through the battery. An electrode which is a physical mixture of two materials has limitations on optimal usage of surface area of the electrode.

To avoid this, researchers from T. N. Narayanan's group created a heterostructure of photosensitive MoS2 (molybdenum disulphide) and MoOx (molybdenum oxide) to function as a single electrode.

Being a heterostructure wherein the MoS2 and MoOx have been fused together by a chemical vapour deposition technique, this electrode allows for more surface area to absorb solar energy. When light rays hit the electrode, the photosensitive MoS2 generates electrons and simultaneously creates vacancies called holes. MoOx keeps the electrons and holes apart, and transfers the electrons to the battery circuit.

This solar battery, which was completely assembled from scratch, was found to operate well when exposed to simulated solar light. The composition of the heterostructure electrode used in this battery has been studied extensively with transmission electron microscope as well. The authors of the study are presently working towards unearthing the mechanism by which MoS2 and MoOx work in tandem with lithium anode resulting in the generation of current.

While this solar battery achieves a higher interaction of photosensitive material with light, it is yet to achieve generation of optimum levels of current to fully recharge a lithium ion battery. With this goal in mind, T. N. Narayanan's lab is exploring how such heterostructure electrodes can pave the way for addressing the challenges of present day solar batteries.

Research Report: "Photo Rechargeable Li-Ion Batteries Using Nanorod Heterostructure Electrodes"


Related Links
Tata Institute of Fundamental Research
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
AFRL, Northrop Grumman demonstrate solar to radio frequency conversion
Kirtland AFB NM (SPX) Dec 27, 2021
The Air Force Research Laboratory's and Northrop Grumman's Space Solar Power Incremental Demonstrations and Research (SSPIDR) Project have successfully conducted the first end-to-end demonstration of key hardware for the Arachne flight experiment. A ground demonstration of novel components for the "sandwich tile" were used to successfully convert solar energy to radio frequency (RF) - a fundamental step required to pave the way for a large-scale solar power collection system in space. In 201 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Flight 19 - New Year, Same Ingenuity

Experiments show algae can survive in Mars-like environment

Perseverance Samples in Review: 2021

Perseverance and the Search Amongst the Sand

SOLAR DAILY
Carbonaceous chondrite impact responsible for lunar water: study

NASA Selects New Members for Artemis Rover Science Team

MIT engineers test an idea for a new hovering Lunar rover

Opening a 50-year-old Christmas present from the Moon

SOLAR DAILY
Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons

NASA's Juno Spacecraft 'Hears' Jupiter's Moon

Deep Mantle Krypton Reveals Earth's Outer Solar System Ancestry

SOLAR DAILY
Billions of starless planets haunt dark cloud cradles

Astronomers Detect Signature of Magnetic Field on an Exoplanet

ESO telescopes help uncover largest group of rogue planets yet

Lost in space: Rocky planets formed from missing solar system material

SOLAR DAILY
Precise Ariane 5 launch likely to extend Webb's expected lifetime

Virgin Orbit expected to list on NASDAQ

Musk says his 'tiny' satellites can't block any rival spacecraft

NASA Builds Artemis III Core Stage Forward Skirt

SOLAR DAILY
Shenzhou XIII taikonauts complete second extravehicular mission

New technologies make Chinese astronauts' in-orbit lives easier

On they march as China records 401st flight of Long March rocket family

China's Long March carrier rocket embarks on 400th mission

SOLAR DAILY
Quadrantids offer winter meteor spectacle

DART returns first images from space

A Christmas comet for Solar Orbiter

Comets' heads can be green, but never their tails









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.