Space Travel News
ROBO SPACE
Engineering breakthrough in softbotics
Robotic snail powered by breakthrough self-healing, electrically conductive material
Engineering breakthrough in softbotics
by Staff Writers
Pittsburgh PA (SPX) Mar 13, 2023

Carnegie Mellon University engineers have developed a soft material with metal-like conductivity and self-healing properties that is the first to maintain enough electrical adhesion to support digital electronics and motors. This advance, published in Nature Electronics, marks a breakthrough in softbotics and the fields of robotics, electronics, and medicine.

At Carnegie Mellon University, softbotics represents a new generation of soft machines and robots manufactured by multi-functional materials that have integrated sensing, actuation, and intelligence.

The research team introduced the material, a liquid-metal filled organogel composite with high electrical conductivity, low stiffness, high stretchability, and self-healing properties in three applications:

+ damage-resistant snail-inspired robot

+ modular circuit to power a toy car

+ reconfigurable bioelectrode to measure muscle activity on different locations of the body

"This is the first soft material that can maintain a high-enough electrical conductivity to support digital electronics and power-hungry devices," said lead author Carmel Majidi, Professor of Mechanical Engineering. "We have demonstrated you can actually power motors with it."

The fully untethered snail robot used the self-healing conductive material on its soft exterior, which was embedded with a battery and electric motor to control motion. During the demonstration, the team severed the conductive material and watched as its speed dropped by more than 50%. Because of its self-healing properties, when the material was manually reconnected, the robot restored its electrical connection and recovered 68% of its original speed.

The material can also act as a modular building block for reconfigurable circuits. In their demonstration, one piece of gel initially connected the toy car to a motor. When the team split that gel into three sections and connected one section to a roof-mounted LED, they were able to restore the car's connection to the motor using the two remaining sections.

"In practice there will be cases where you want to reuse and recycle these gel-like electronics into different configurations, and our toy car demonstration shows that's possible," explained Majidi.

Lastly, the team demonstrated the material's ability to be reconfigured to obtain electromyography (EMG) readings from different locations on the body. Because of its modular design, the organogel can be refitted to measure hand activity on the anterior muscles of the forearm and to the back of the leg to measure calf activity. This opens doors to tissue-electronic interfaces like EMGs and EKGs using soft, reusable materials.

"Softbotics is about seamlessly integrating robotics into everyday life, putting humans at the center," Majidi explained. "Instead of being wired up with biomonitoring electrodes connecting patients to bio measurement hardware mounted on a cart, our gel can be used as a bioelectrode that directly interfaces with body-mounted electronics that can collect information and transmit it wirelessly."

Moving forward, Majidi hopes to couple this work on artificial nervous tissue with his research on artificial muscle to build robots made entirely of soft, gel-like materials.

"It would be interesting to see soft-bodied robots used for monitoring hard to reach places. Whether that be a snail that could monitor water quality, or a slug that could crawl around our houses looking for mold."

Research Report:A self-healing electrically conductive organogel composite

Related Links
Carnegie Mellon College of Engineering
All about the robots on Earth and beyond!

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ROBO SPACE
Shape memory for nano-sized objects
Zurich, Switzerland (SPX) Mar 13, 2023
Alloys that can return to their original structure after being deformed have a so-called shape memory. This phenomenon and the resulting forces are used in many mechanical actuating systems, for example in generators or hydraulic pumps. However, it has not been possible to use this shape-memory effect at a small nanoscale: Objects made of shape-memory alloy can only change back to their original shape if they are larger than around 50 nanometers. Researchers led by Salvador Pane, Professor of Mate ... read more

ROBO SPACE
ROBO SPACE
NASA's Curiosity Views First 'Sun Rays' on Mars

SAM Wants More Sample: Sol 3762

Solid-gas carbonate formation during dust events on Mars

Hansel and Gretel's breadcrumb trick inspires robotic exploration of caves on Mars and beyond

ROBO SPACE
Department of Energy and NASA join forces on innovative lunar experiment

Lonestar successfully completes $5m in oversubscribed seed financing

UK companies to provide services for future Moon missions

Flat, pancake-sized metalens images lunar surface in an engineering first

ROBO SPACE
First the Moon, now Jupiter

Newly discovered form of salty ice could exist on surface of extraterrestrial moons

New aurorae detected on Jupiter's four largest moons

JUICE's final take-off before lift-off

ROBO SPACE
Can artificial intelligence help find life on Mars or icy worlds?

Humanity's quest to discover the origins of life

Removing traces of life in lab helps NASA scientists study its origins

To new worlds with quantitative spectroscopy

ROBO SPACE
Relativity Space postpones first 3D-printed rocket launch

SpaceX CRS-27 delivers truck load of research projects to ISS

Virgin Galactic to renew Spaceplane Flights

Japan's new H3 rocket fails again, forced to self-destruct

ROBO SPACE
Shenzhou XV crew takes second spacewalk

China conducts ignition test in Mengtian space lab module

China plans robotic spacecraft to collect samples from asteroid

China's space station experiments pave way for new space technology

ROBO SPACE
The planet that could end life on Earth

What we learned from the asteroid-smashing DART mission

Hubble captures movie of DART asteroid impact debris

New insights from an ancient asteroid

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.