Subscribe free to our newsletters via your
. Space Travel News .




BIO FUEL
Engineered softwood could transform pulp, paper and biofuel industries
by Staff Writers
Madison WI (SPX) Apr 27, 2015


John Ralph, Great Lakes Bioenergy Center (GLBRC) plants leader and University of Wisconsin-Madison professor of biochemistry.

Scientists have demonstrated the potential for softwoods to process more easily into pulp and paper if engineered to incorporate a key feature of hardwoods. The finding, published in this week's Proceedings of the National Academy of Sciences, could improve the economics of the pulp, paper and biofuels industries and reduce those industries' environmental impact.

"What we've shown is that it's possible to pair some of the most economically desirable traits of each wood type," says John Ralph, the Great Lakes Bioenergy Research Center's (GLBRC) plants leader and a University of Wisconsin-Madison professor of biochemistry.

According to Ralph, altering what once was the hard and fast distinction between softwoods and hardwoods - which process into largely separate product streams - could create opportunities for the multi-billion dollar industries that process biomass for profit.

Like most plants, hardwood trees such as birch or poplar contain lignin, the notoriously hard-to-process "glue" that lends plant tissues their structure and sturdiness. Lignin is derived from binding molecules called G- and S-monomers, with S-monomers producing a simpler and more easily degradable lignin. As hardwoods contain both G- and S-monomers, they have traditionally been prized for their relatively easy processing into pulp or paper.

Softwoods such as pine or spruce, on the other hand, derive their lignin from G-monomers only, producing a lignin that is much harder to degrade and which renders softwoods more difficult to process. Their industrial advantage, however, is their long fibers, which are particularly well suited for use in making strong paper products such as shipping containers and grocery bags. In addition, the sugar found within softwoods converts more easily and in higher volume to ethanol, making softwoods a potentially superior feedstock for biofuels.

Ralph and a team of collaborators, including first author Armin Wagner from Scion, one of New Zealand's Crown Research Institutes, and GLBRC's Fachuang Lu, used a model called the "tracheary element" (TE) system to prove that it's possible to engineer conventionally long-fibered softwoods to contain the easier-to-process lignin found in hardwoods.

The TE system induces suspension-cultured cells to make secondary cell walls representative of those found in real wood fibers. In this study, the researchers transformed cells from softwood pine within the TE system by introducing genes for two key enzymes known to produce lignin in flowering plants, showing that the resulting softwood was capable of making and incorporating the S-monomers needed to produce a hardwood-type lignin in its cell wall.

Next, the researchers will attempt to use the same approaches to engineer actual softwood plants to produce S-monomers and S/G lignins. The transition from model to plant is highly anticipated.

"If we could implement this in real plantation softwoods, we could decrease the intensity of pre-treatment processes and increase yields across a variety of industries," Ralph says. "But there's a tangible environmental benefit as well: processing biomass faster and more efficiently cuts out a significant amount of waste and energy."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Discovery of new plant switch could boost crops, biofuel production
East Lansing MI (SPX) Apr 17, 2015
A team of Michigan State University researchers has discovered a switch that regulates plant photosynthesis - the process that lets plants store solar energy and use it to grow and produce food. Photosynthesis stores energy in two forms that are used to power plants' metabolism. The amount of energy flowing into each of these must be perfectly balanced to match the needs of plants' metabol ... read more


BIO FUEL
Ariane 5 reaches the launch zone for next heavy-lift mission

Sentinel-2A arrives for Ariane Vega mission

Arianespace Flight VA222: THOR 7 and SICRAL 2 - launch delayed

SpaceX Dragon cargo ship arrives at space station

BIO FUEL
UAE opens space center to oversee mission to Mars

Robotic Arm Gets Busy on Rock Outcrop

Mars might have liquid water

NASA's Curiosity Rover Making Tracks and Observations

BIO FUEL
Japan to land first unmanned spacecraft on moon in 2018

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

Japan planning moon mission: space agency

BIO FUEL
Capstone: 2015

NASA's New Horizons Nears Historic Encounter with Pluto

Pluto, now blurry, will become clear with NASA flyby

NASA Extends Campaign for Public to Name Features on Pluto

BIO FUEL
First exoplanet visible light spectrum

White Dwarf May Have Shredded Passing Planet

Spitzer, OGLE spot planet deep within our galaxy

Spitzer Spots Planet Deep Within Our Galaxy

BIO FUEL
NASA 3-D Prints First Full-Scale Copper Rocket Engine Part

SpaceX says rocket recovery failure due to throttle valve problem

NASA, Orbital ATK tackle tough booster issues before ground test

Russia Abandons Plans to Build Super-Heavy Carrier Rocket From Scratch

BIO FUEL
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

BIO FUEL
Ceres' Bright Spots Come Back Into View

Design begins for ESA's Asteroid Impact Mission

Millimetre-sized stones formed our planet

SwRI team studies meteorites from asteroids to date moon impacts




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.