![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Bonn, Germany (SPX) Jun 29, 2016
The elephantnose fish explores objects in its surroundings by using its eyes or its electrical sense - sometimes both together. Zoologists at the University of Bonn and a colleague from Oxford have now found out how complex the processing of these sensory impressions is. With its tiny brain, the fish achieves performance comparable to that of humans or mammals. The advance results have been published online in the "Proceedings of the National Academy of Sciences of the United States of America" (PNAS). The print issue will appear soon. The elephantnose fish (Gnathonemus petersii) is widespread in the flowing waters of West Africa and hunts insect larva at dawn and dusk. It is helped by an electrical organ in its tail, which emits electrical impulses. The skin contains numerous sensor organs that perceive objects in the water by means of the changed electrical field. "This is a case of active electrolocation, in principle the same as the active echolocation of bats, which use ultrasound to perceive a three-dimensional image of their environment", says Professor Dr. Gerhard von der Emde at the Institute of Zoology at the University of Bonn. Furthermore, the elephantnose fish can also orient using its eyes. Professor von der Emde, along with his doctoral candidate Sarah Schumacher and Dr. Theresa Burt de Perera of Oxford University, have now investigated how the unusual fish processes the information from the various sensory channels. Ms. Schumacher summarizes the results: "The animals normally use both senses. If necessary, for example because one of the two senses provides no information or the information of the two senses differs greatly, however, the fish can switch back and forth between their visual and electrical senses". The scientists were surprised by the manner in which the fish use these two senses to get the best perception of their environment: When the animals became familiar with an object in the aquarium, for example with the visual sense, they were also able to recognize it again using the electrical sense, although they had never perceived it electrically before.
Fish give precedence to the most reliable sensory information They perceived the environment best by using their visual and electrical senses in combination. "A transfer between the different senses was previously known only for certain highly developed mammals, such as monkeys, dolphins, rats, and humans", says Professor von der Emde. An example: In a dark, unfamiliar apartment, people feel their way forward to avoid stumbling. When the light goes on, the obstacles felt are recognized by the eye without any problem. Mammals process such information with their cerebral cortex. The elephantnose fish, however, has just a relatively small brain and no cerebral cortex at all - but nevertheless switches back and forth between the senses.
Clever experimental setup When does the fish use a particular sense? In order to answer this question, the researchers repeated the experiments in absolute darkness. Now the fish could rely only on its electrical sense. As shown by images taken with an infrared camera, it was able to recognize the object only at short distances. With the light on the fish was most successful, because it was able to use its eyes and the electrical sense for the different distances. In order to find out when the fish used its eyes alone, the researchers made the objects invisible to the electrical sense. Now, the sphere and cuboid to be discriminated had the same electrical characteristics as the water. Many repetitions of the individual experiments were necessary in order to apply statistical analyses to reach conclusions about the sensory processing of the elephantnose fish. The scientists worked with a total of ten animals, working more or less in shifts. "The behavior of the different individuals was nearly identical", says Professor von der Emde. For that reason the scientists are certain that this enormous sensory performance is achieved not only by a particulary talented specimen but by all elephantnose fish. Research paper: Cross-modal object recognition and dynamic weighting of sensory inputs in a fish
Related Links University of Bonn Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |