Space Travel News  
SHAKE AND BLOW
Earthquake forecasts move a step closer to reality
by Staff Writers
Austin TX (SPX) Aug 10, 2021

File illustration

Earthquakes - like lightning - strike unpredictably. The Earth's tectonic plates, however, hide subtle warnings that a major fault may soon break. Like forecasting a thunderstorm, knowing how to read the warnings could help communities protect lives, infrastructure and local economies.

For decades, scientists have struggled to reliably give forecasts for major earthquake hotspots, but now an international team of scientists led by The University of Texas at Austin has embarked on a new initiative to do just that.

"Physics-based forecasting is what we're trying to achieve," said project lead Thorsten Becker, a professor at UT's Jackson School of Geosciences.

The five-year project, funded by the National Science Foundation, will develop new computing tools, software and instructional material focused on forecast modeling. The team will also train students, hold workshops and recruit new computational geoscientists by drawing on overlooked talent pools and reaching out to underserved communities.

The ultimate goal: computer models that can forecast the chances of an earthquake happening and its likely impact, similar to those used to predict the weather but on longer timescales.

"Reviewers and the NSF Frontier Research in the Earth Sciences program are genuinely excited about the potential of a physics-based model of megathrusts, and the prospect of predictive models," said Dennis Geist, program director in the Division of Earth Sciences at the NSF.

Becker doesn't expect to see earthquake "weather" forecasts within five years, but he believes the idea is now technically possible. The bulk of what remains is figuring out the physics governing earthquakes and their inherent uncertainties: key ingredients in the forecasting process.

"At UT we have the benefit of having great people already working on different parts of the problem," he said. Becker is joined on the project by scientists at the Jackson School, its Institute for Geophysics, UT's Oden Institute for Computational Engineering and Sciences, and supercomputers at the Texas Advanced Computing Center (TACC).

The UT scientists will team up with researchers at universities and national labs working on three of the world's earthquake hotspots: the U.S. Pacific Northwest, New Zealand and Japan.

One of those researchers is project co-lead Alice Gabriel, an earthquake physicist at the Scripps Institution of Oceanography and LMU Munich, Germany. According to Gabriel, physics is key to solving the earthquake riddle.

"By taking a physics-based approach, we can home in on the conditions that matter for the earthquake cycle and find optimal locations to place new sensors," she said.

The sites selected are all subduction zones - places where tectonic plates meet. The differences between them will allow researchers to test their models and figure out what conditions to look for when deciding whether an earthquake is likely.

Subduction zones are important because they are the sites of the world's most powerful earthquakes and can trigger dangerous tsunamis, such as the one following the 2004 Indian Ocean earthquake that killed almost a quarter of a million people in 14 countries.

They are a challenge to study, however, because they are usually situated offshore and driven by deep geologic forces that take hundreds to millions of years to unfold, at scales from fractions of an inch to thousands of miles. That's why earthquake scientists turn to computers to simulate faults and their tectonic settings. The new project will look for gaps in the physics and figure out what needs to be measured to make the simulations more useful to forecasters.

"It's a little bit like calculating the probability of a pandemic," said Laura Wallace, a research scientist at the University of Texas Institute for Geophysics, who is based in New Zealand. "You can't know when and where the next one will happen but you can look at factors that make it more likely and model how it might unfold."

Simulating events in the natural world has great potential but requires understanding of both geoscience and computing, a combination that remains in short supply. That's why a large portion of the project's resources is assigned to training a new generation of students that will benefit not just the project but the geosciences as a whole.

To do that, Dana Thomas, a Jackson School outreach coordinator and one of the project's co-leaders, is designing education programs to show students from other fields how their skills can be used to answer questions about the way the Earth works.

"Students shouldn't think they need to put on a backpack to study our Earth," Thomas said. "We can reach so many more potential computational geoscientists by drawing on talent from math, physics and other allied STEM fields, and reaching out to underserved communities."

Thomas's plans include a bridge program for incoming college freshmen, paid summer research opportunities for talented undergraduates at historically Black colleges and universities, such as Fort Valley State University, and a summer school with TACC that will train students to use Frontera, the world's most powerful university-based supercomputer. The programs fit together in a freshman-to-grad-school pipeline: it's a model Thomas hopes will be replicated up and down the country.

Collaborating institutions on the $2.8 million project are UT Austin, the University of California at San Diego, Indiana University, the Massachusetts Institute of Technology, ETH Zurich, Utrecht University, the Japan Agency for Marine-Earth Science and Technology, the Earthquake Research Institute at the University of Tokyo, NIED, and New Zealand's GNS Science.


Related Links
University of Texas
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SHAKE AND BLOW
8.2 magnitude earthquake off Alaskan peninsula, small tsunami
Washington (AFP) July 29, 2021
An 8.2 magnitude earthquake struck off the Alaskan peninsula late Wednesday, the United States Geological Survey said, generating small waves but no major tsunami before all warnings were canceled. The earthquake hit 56 miles (91 kilometers) southeast of the town of Perryville, the USGS said. The quake struck at 10:15 pm Wednesday (0615 GMT Thursday). Perryville is a small village about 500 miles from Anchorage, Alaska's biggest city. The US government's National Tsunami Warning Center immed ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
SHAKE AND BLOW
North-By-Northwest for Ingenuity's 11th Flight

Science in motion for ExoMars twin rover

Earthly rocks point way to water hidden on Mars

Clays, not water, are likely source of Martian lakes

SHAKE AND BLOW
Government watchdog denies protests of SpaceX's lunar lander contract

Bezos offers NASA a $2 billion discount for Blue Origin Moon lander

Apollo to Artemis: Drilling on the Moon

Mini radar could scan the Moon for water and habitable tunnels

SHAKE AND BLOW
Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission

Juno tunes into Jovian radio triggered by Jupiter's volcanic moon Io

Ride with Juno as it flies past Jupiter and Ganymede

SHAKE AND BLOW
Astronomers show how planets form in binary systems without getting crushed

Galileo Project to search for ET artifacts in galactic space

From the sun to the stars: A journey of exoplanet discovery begins

ALMA images moon-forming disk around alien world

SHAKE AND BLOW
Finding the cause of a fatal problem in rocket engine combustors

US watchdog upholds SpaceX's Moon lander contract

NASA performs field test of 3D imaging system for descent and landing

Lift off for UK spaceflight as regulations passed

SHAKE AND BLOW
Shanxi company helps astronauts keep fit in space

China's space propaganda blitz endures at slick new planetarium

How Chinese astronauts stay healthy in space

China's five-star red flag flies proudly on red planet

SHAKE AND BLOW
SwRI team zeroes in on source of the impactor that wiped out the dinosaurs

Western leads global project observing rare meteor showers and meteorite falls

Red bodies similar to Kuiper objects found in main asteroid belt

Tail without a comet: the dusty remains of Comet ATLAS









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.