Subscribe free to our newsletters via your
. Space Travel News .




FARM NEWS
E. coli adapts to colonize plants
by Staff Writers
Norwich UK (SPX) Nov 07, 2012


The researchers found that E. coli populations derived from plants tended to form biofilms more readily. Biofilms are complex structures formed by populations of bacteria coming together to make a thin film over a surface.

New research from the Institute of Food Research has given new clues as to how some E. coli strains, normally at home in mammalian gastrointestinal tracts, have adopted slightly different transmission strategies, with some being better adapted to live on plants than others.

In the light of recent outbreaks of food poisoning due to contamination of vegetables by dangerous strains of E. coli, this information will be useful to making sure our food remains safe. E. coli is most at home in the warm, moist, nutrient-rich environment found in the gastrointestinal tract of warm-blooded animals.

But to disperse from one host to another these bacteria must get out into the world. There is evidence that some E. coli can survive for several weeks outside the host, and even grow in water or soil. But it is on plant matter that E. coli colonisation has become a concern, as although most types of E. coli are harmless, the presence of pathogenic strains on fruit and vegetables presents a food safety risk.

To find out more, the IFR team took the first comprehensive look at the differences between the populations of E. coli growing on crop plants and populations in the mammalian gut. Funded by the Biotechnology and Biological Sciences Research Council, they took over 100 isolates from leafy parts of vegetables growing in fields in England.

Analysis of these showed that even within the same field the E. coli population is diverse and complex. They then compared these isolates with a standard reference collection of E. coli taken from mammals, including humans, from different continents.

Profiling the two groups found a number of significant differences depending on the source of isolation. Compared to the habitat inside the gut, a leaf surface is a hostile environment for gut bacteria. The temperature fluctuates away from the constant 37 degrees C inside our bodies, and there is a greater risk of drying out.

The researchers found that E. coli populations derived from plants tended to form biofilms more readily. Biofilms are complex structures formed by populations of bacteria coming together to make a thin film over a surface.

They are held together by a protective extracellular matrix of proteins and sugars, and the researchers saw that there was also an increase in the production of components of this matrix in E. coli derived from the fields. These strains also used sucrose and other plant-derived sugars more than the E. coli populations derived from mammalian sources.

Biofilms might help to prevent E. coli drying out outside of its host and being able to take advantage of plant sugars could also aid their survival outside the main host, although overall the plant strains showed lower growth on the usual carbon sources E. coli uses.

An analysis showed that these differences are associated with previously defined phylogentic groups of E. coli showing that different environmental conditions have a selective effect in the evolution of different groups. While some have become more generalised, adapting to life outside the mammalian gut, others have remained specialised for life in this environment, avoiding the associated growth penalty.

"While it was known that different environments harboured different E. coli populations, we now have an idea on how and why this happens," said Sacha Lucchini.

"Knowledge of the mechanisms involved in plant colonisation by E. coli provides targets for developing strategies aimed at preventing potentially dangerous E. coli strains from colonising vegetables, thus keeping them off our plates."

Reference: Phylogenetic distribution of traits associated with plant colonization in Escherichia coli, Environmental Microbiology doi:10.1111/j.1462-2920.2012.02852.x

.


Related Links
Norwich BioScience Institutes
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
Ozone's impact on soybean yield: Reducing future losses
Urbana IL (SPX) Nov 07, 2012
People tend to think of ozone as something in the upper atmosphere that protects the earth's surface from UV radiation. At the ground level, however, ozone is a pollutant that damages crops, particularly soybean. Lisa Ainsworth, a University of Illinois associate professor of crop sciences and USDA Agricultural Research Service plant molecular biologist, said that establishing the exposure thres ... read more


FARM NEWS
Russian Proton Briz-M Launches Yamal Satellites Into Orbit

SpaceX Transitions to Third Commercial Crew Phase with NASA

Globalstar Birds To Launch On Soyuz Next February

Ariane 5s are readied in parallel for Arianespace's next heavy-lift flights

FARM NEWS
Curiosity Team Switches Back to Earth Time

Survey of 'Matijevic Hill' Continues

Mars Longevity Champ Switching Computers

NASA Rover Finds Clues to Changes in Mars' Atmosphere

FARM NEWS
Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

Astrium presents results of its study into automatic landing near the Moon's south pole

FARM NEWS
Keck Observations Bring Weather Of Uranus Into Sharp Focus

At Pluto, Moons and Debris May Be Hazardous to New Horizons Spacecraft During Flyby

Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

FARM NEWS
Physicists confirm first planet discovered in a quadruple star system

Planet-hunt data released to public

New Study Brings a Doubted Exoplanet 'Back from the Dead'

New small satellite will study super-Earths for ESA

FARM NEWS
NASA's Space Launch System Using Futuristic Technology to Build the Next Generation of Rockets

NASA Seeks Options for SLS Cargo Payload Fairings and Adapters

SLS Industry Day at Michoud Assembly Facility

Orbiting Gas Stations for Satellites

FARM NEWS
Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

China to launch 11 meteorological satellites by 2020

China makes progress in spaceflight research

Patience for Tiangong

FARM NEWS
NASA Radar Images Asteroid 2007 PA8

Ball Aerospace/B612 Foundation Sign Contract for Sentinel Mission

Scientists Monitor Comet Breakup

Protoplanet Vesta: Forever young?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement