Space Travel News  
CLIMATE SCIENCE
'Dry Water' Could Make A Big Splash Commercially

Powdered material called "dry water" could provide a new way to store carbon dioxide in an effort to fight global warming. Credit: Ben Carter.
by Staff Writers
Boston MO (SPX) Aug 27, 2010
An unusual substance known as "dry water," which resembles powdered sugar, could provide a new way to absorb and store carbon dioxide, the major greenhouse gas that contributes to global warming, scientists reported at the 240th National Meeting of the American Chemical Society.

The powder shows bright promise for a number of other uses, they said. It may, for instance, be a greener, more energy-efficient way of jumpstarting the chemical reactions used to make hundreds of consumer products. Dry water also could provide a safer way to store and transport potentially harmful industrial materials.

"There's nothing else quite like it," said Ben Carter, Ph.D., researcher for study leader Professor Andrew Cooper. "Hopefully, we may see 'dry water' making waves in the future."

Carter explained that the substance became known as "dry water" because it consists of 95 percent water and yet is a dry powder. Each powder particle contains a water droplet surrounded by modified silica, the stuff that makes up ordinary beach sand.

The silica coating prevents the water droplets from combining and turning back into a liquid. The result is a fine powder that can slurp up gases, which chemically combine with the water molecules to form what chemists term a hydrate.

Dry water was discovered in 1968 and got attention for its potential use in cosmetics. Scientists at the University of Hull, U.K. rediscovered it in 2006 in order to study its structure, and Cooper's group at the University of Liverpool has since expanded its range of potential applications.

One of the most recent involves using dry water as a storage material for gases, including carbon dioxide. In laboratory-scale research, Cooper and co-workers found that dry water absorbed over three times as much carbon dioxide as ordinary, uncombined water and silica in the same space of time.

This ability to absorb large amounts of carbon dioxide gas as a hydrate could make it useful in helping to reduce global warming, the scientists suggested.

Cooper and colleagues demonstrated in previous studies that dry water is also useful for storing methane, a component of natural gas, and may help expand its use as a future energy source. In particular, they hope that engineers can use the powder to collect and transport stranded deposits of natural gas.

This also exists on the ocean floor in the form of gas hydrates, a form of frozen methane also known as the "ice that burns." The powder could also provide a safer, more convenient way to store methane fuel for use in vehicles powered by natural gas. "A great deal of work remains to be done before we could reach that stage," Carter added.

In another potential new application, the scientists also showed that dry water is a promising means to speed up catalyzed reactions between hydrogen gas and maleic acid to produce succinic acid, a feedstock or raw material widely used to make drugs, food ingredients, and other consumer products.

Manufacturers usually have to stir these substances together to get them to react. By developing dry water particles that contain maleic acid, Cooper and colleagues showed that they could speed up the acid's reaction with hydrogen without any stirring, resulting in a greener, more energy-efficient process.

"If you can remove the need to stir your reactions, then potentially you're making considerable energy savings," Carter said.

Prof. Cooper's team describes an additional new application in which dry water technology shows promise for storing liquids, particularly emulsions. Emulsions are mixtures of two or more unblendable liquids, such as the oil and water mixture in mayonnaise.

The scientists showed that they could transform a simple emulsion into a dry powder that is similar to dry water. The resulting powder could make it safer and easier for manufacturers to store and transport potentially harmful liquids.

Carter noted that he and his colleagues are seeking commercial or academic collaboration to further develop the dry water technology. The U.K. Engineering and Physical Sciences Research Council (EPSRC) and the Center for Materials Discovery provided funding and technical support for this study.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
American Chemical Society
Climate Science News - Modeling, Mitigation Adaptation



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


CLIMATE SCIENCE
Engineering The Skies
Moffett Field CA (SPX) Aug 26, 2010
If the world could make one major change that would stave off climate change, what would it be? Stanford University engineering scientist Mark Jacobson has the answer: get rid of black soot. The dense carbon particles are the result of incomplete combustion of a hydrocarbon from engines, forest fires, and power plants. Ever seen discolored walls above the baseboard of an electric heating u ... read more







CLIMATE SCIENCE
Arianespace Announces Launch Contracts For Intelsat-20 And GSAT 10 Satellites

Arianespace Launches Two Satellites

New Rocket Launch Period In And Around Tanegashima

Kourou Spaceport Welcomes New Liquid Oxygen And Liquid Nitrogen Production Facility

CLIMATE SCIENCE
The Mutating Mars Hoax

NASA's Marks 35th Anniversary Of Mars Viking Mission

Martian 'mud' volcanoes eyed for life

Opportunity Keeps On Driving To Endeavour Crater

CLIMATE SCIENCE
Caterpillar Joins Sponsors Of First Expedition

LRO Reveals Incredible Shrinking Moon

A Hop, Skip And A Jump On The Moon - And Beyond

China's Lunar Twins

CLIMATE SCIENCE
Weighing The Planets, From Mercury To Saturn

Pounding Particles To Create Neptune's Water In The Lab

Course Correction Keeps New Horizons On Path To Pluto

Scientists See Billions Of Miles Away

CLIMATE SCIENCE
Richest Planetary System Discovered

Planets In Unusually Intimate Dance Around Dying Star

Detector Technology Could Help NASA Find Earth-Like Exoplanets

NASA Finds Super-Hot Planet With Unique Comet-Like Tail

CLIMATE SCIENCE
Space tourist launch plane damaged

Argentina plans to join Space Age

Honeywell Provides Guidance System For Atlas V Rocket

Using Rocket Science To Make Wastewater Treatment Sustainable

CLIMATE SCIENCE
China Finishes Construction Of First Unmanned Space Module

China Contributes To Space-Based Information Access A Lot

China Sends Research Satellite Into Space

China eyes Argentina for space antenna

CLIMATE SCIENCE
NASA prepares for asteroid rendezvous

Japan plans second asteroid sample grab

Countdown To Vesta

Delhi School Boys Discover New Asteroid


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement