![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Munich, Germany (SPX) Aug 15, 2016
Physicists from the Technical University of Munich (TUM) have succeeded in detecting a time-resolved supernova signal in the Earth's microfossil record. As the group of Prof. Shawn Bishop could show, the supernova signal was first detectable at a time starting about 2.7 Million years ago. According to the researcher's analyses, our solar system spent one Million years to transit trough the remnants of a supernova. When massive stars with more than ten solar masses have, at the end of their evolution, consumed all of their nuclear fuel supply, they collapse under their gravity and terminate in so-called core-collapse supernovae. Thereby they eject huge amounts of matter into their surroundings. If a supernova occurs sufficiently close to our solar system, it should leave traces of supernova debris on Earth, in the form of specific radioisotopes.
Supernova-iron on the Earth
Increased concentration also found in lunar samples Now for the first time, physicists of the group of Shawn Bishop, TUM Professor on Nuclear Astrophysics, succeeded in discovering a time-resolved supernova signal in the Earth's microfossil record, residing in biogenically produced crystals from two Pacific Ocean sediment drill cores. The onset of the Fe-60 signal occurs at around 2.7 Million years and is centered at around 2.2 Million years. The signal significantly ends around 1.7 Million years. "Obviously, the solar system spent on Million years to transit through the debris of a supernova," says Shawn Bishop, who is also a principal investigator at the Excellence Cluster Universe.
Samples with excellent stratigraphic resolution
Analyses at the Tandem accelerator in Garching "Nevertheless, the Fe-60 concentration in these fossils is so low that it is detectable only by means of ultrasensitive accelerator mass spectroscopy (AMS)", says Dr. Peter Ludwig, researcher in the group of Shawn Bishop. At the tandem accelerator at the Maier-Leibnitz Laboratory in Garching the physicists could refine the sensitivity of the method so that this discovery was possible the first time ever.
Supernova event at a distance of at least 300 light years Over the course of the last 10 to 15 million years, a succession of 15 to 20 supernovae has occurred in this star association. This series of massive stellar explosions has produced a largely matter-free cavity in the interstellar medium of a galactic arm of the Milky Way. Astronomers call this cavity, in which our solar system is located, the Local Bubble. Research paper: "Ludwig et al.: Time resolved 2-million-year-old supernova activity discovered in Earth's microfossil record" - Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1601040113
Related Links Technical University of Munich Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |