Space Travel News  
BIO FUEL
Discovery could lead to sustainable ethanol made from carbon dioxide
by Staff Writers
Stanford CA (SPX) Jun 22, 2017


Stanford scientists have designed a copper catalyst that produces ethanol from carbon dioxide and water. Image courtesy Mark Shwartz and Stanford University.

Most cars and trucks in the United States run on a blend of 90 percent gasoline and 10 percent ethanol, a renewable fuel made primarily from fermented corn. But to produce the 14 billion gallons of ethanol consumed annually by American drivers requires millions of acres of farmland.

A recent discovery by Stanford University scientists could lead to a new, more sustainable way to make ethanol without corn or other crops. This promising technology has three basic components: water, carbon dioxide and electricity delivered through a copper catalyst. The results are published in the Proceedings of the National Academy of Sciences (PNAS).

"One of our long-range goals is to produce renewable ethanol in a way that doesn't impact the global food supply," said study principal investigator Thomas Jaramillo, an associate professor of chemical engineering at Stanford and of photon science at the SLAC National Accelerator Laboratory.

Scientists would like to design copper catalysts that selectively convert carbon dioxide into higher-value chemicals and fuels, like ethanol and propanol, with few or no byproducts. But first they need a clear understanding of how these catalysts actually work. That's where the recent findings come in.

Copper crystals
For the PNAS study, the Stanford team chose three samples of crystalline copper, known as copper (100), copper (111) and copper (751). Scientists use these numbers to describe the surface geometries of single crystals.

"Copper (100), (111) and (751) look virtually identical but have major differences in the way their atoms are arranged on the surface," said Christopher Hahn, an associate staff scientist at SLAC and co-lead lead author of the study. "The essence of our work is to understand how these different facets of copper affect electrocatalytic performance."

In previous studies, scientists had created single-crystal copper electrodes just 1-square millimeter in size.

"With such a small crystal, it's hard to identify and quantify the molecules that are produced on the surface," Hahn explained. "This leads to difficulties in understanding the chemical reactions, so our goal was to make larger copper electrodes with the surface quality of a single crystal."

To create bigger samples, Hahn and his co-workers at SLAC developed a novel way to grow single crystal-like copper on top of large wafers of silicon and sapphire.

"What Chris did was amazing," Jaramillo said. "He made films of copper (100), (111) and (751) with 6-square centimeter surfaces. That's 600 times bigger than typical single crystals.

Catalytic performance
To compare electrocatalytic performance, the researchers placed the three large electrodes in water, exposed them to carbon dioxide gas and applied a potential to generate an electric current.

The results were clear. When a specific voltage was applied, the electrodes made of copper (751) were far more selective to liquid products, such as ethanol and propanol, than those made of copper (100) or (111). The explanation may lie in the different ways that copper atoms are aligned on the three surfaces.

"In copper (100) and (111), the surface atoms are packed close together, like a square grid and a honeycomb, respectively" Hahn said. "As a result, each atom is bonded to many other atoms around it, and that tends to make the surface more inert."

But in copper (751), the surface atoms are further apart.

"An atom of copper (751) only has two nearest neighbors," Hahn said. "But an atom that isn't bonded to other atoms is quite unhappy, and that makes it want to bind stronger to incoming reactants like carbon dioxide. We believe this is one of the key factors that lead to better selectivity to higher-value products, like ethanol and propanol."

Ultimately, the Stanford team would like to develop a technology capable of selectively producing carbon-neutral fuels and chemicals at an industrial scale.

"The eye on the prize is to create better catalysts that have game-changing potential by taking carbon dioxide as a feedstock and converting it into much more valuable products using renewable electricity or sunlight directly," Jaramillo said. "We plan to use this method on nickel and other metals to further understand the chemistry at the surface. We think this study is an important piece of the puzzle and will open up whole new avenues of research for the community."

Jaramillo also serves at deputy director of the SUNCAT Center for Interface Science and Catalysis, a partnership of the Stanford School of Engineering and SLAC.

The study was also written by co-lead author Toru Hatsukade, Drew Higgins and Stephanie Nitopi at Stanford; Youn-Geun Kim at SLAC; and Jack Baricuatro and Manuel Soriaga at the California Institute of Technology.

BIO FUEL
Turning car plastics into foams with coconut oil
Washington DC (SPX) Jun 12, 2017
End-of-life vehicles, with their plastic, metal and rubber components, are responsible for millions of tons of waste around the world each year. Now, one team reports in ACS Sustainable Chemistry and Engineering that the plastic components in these vehicles can be recycled with coconut oil and re-used as foams for the construction, packaging and automotive industries. Recycled polycarbonat ... read more

Related Links
Stanford University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
BIO FUEL
Russian Institute to Start Long-Haul Mars Mission Simulations in November

Elon Musk's vision of a self-sustaining city on Mars published in New Space

Walkabout Above 'Perseverance Valley'

Hot rocks, not warm atmosphere, led to relatively recent water-carved valleys on Mars

BIO FUEL
New NELIOTA project detects flashes from lunar impacts

Cube Quest Challenge Team Spotlight: Cislunar Explorers

Winning plans for CubeSats to the Moon

Printing bricks from moondust using the Sun's heat

BIO FUEL
New Horizons Team Digs into New Data on Next Flyby Target

A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

BIO FUEL
Astronomers Explain Formation of Seven Exoplanets Around TRAPPIST-1

OU astrophysicist identifies composition of Earth-size planets in TRAPPIST-1 system

Flares May Threaten Planet Habitability Near Red Dwarfs

The Art of Exoplanets

BIO FUEL
Kazakh man dies in fire after Russian rocket launch

NASA and Industry Team Successfully Test Orion Launch Abort Motor

India's Kerosene-Based Semi-Cryogenic Engine to Be Flight Test Ready by 2021

Russia's Next Carrier-Based Rocket Launch Planned for 2018 - Khrunichev Center

BIO FUEL
China to launch four more probes before 2021

China launches remote-sensing micro-nano satellites

China's cargo spacecraft completes second in-orbit refueling

Commsat aims high with satellite system launch

BIO FUEL
B612 Creates Asteroid Institute

Rosetta finds comet connection to Earth's atmosphere

Scientists solve meteorite mystery with high-pressure X-ray experiments

High-pressure experiments solve meteorite mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.