Subscribe free to our newsletters via your
. Space Travel News .




CARBON WORLDS
Direct 'writing' of artificial cell membranes on graphene
by Staff Writers
Manchester UK (SPX) Oct 15, 2013


Lipid membranes can be directly "written" on graphene with a nano-scale dip-pen. Credit: The University of Manchester.

Writing in Nature Communications, researchers at The University of Manchester led by Dr Aravind Vijayaraghavan, and Dr Michael Hirtz at the Karlsruhe Institute of Technology (KIT), have demonstrated that membranes can be directly 'written' on to a graphene surface using a technique known as Lipid Dip-Pen Nanolithography (L-DPN).

The human body contains 100 trillion cells, each of which is enveloped in a cell membrane which is essentially a phospholipid bi-layer membrane. These cell membranes have a plethora of proteins, ion channels and other molecules embedded in them, each performing vital functions.

It is essential, therefore, to study and understand these systems, thereby enabling their application in areas such as bio-sensing, bio-catalysis and drug-delivery. Considering that it is difficult to accomplish this by studying live cells inside the human body, scientists have developed model cell membranes on surfaces outside the body, to study the systems and processes under more convenient and accessible conditions.

Dr Vijayaraghavan's team at Manchester and their collaborators at KIT have shown that graphene is an exciting new surface on which to assemble these model membranes, and brings many advantages compared to existing surfaces.

Dr Vijayaraghavan said: "Firstly, the lipids spread uniformly on graphene to form high-quality membranes. Graphene has unique electronic properties; it is a semi-metal with tuneable conductivity.

"When the lipids contain binding sites such as the enzyme called biotin, we show that it actively binds with a protein called streptavidin. Also, when we use charged lipids, there is charge transfer from the lipids into graphene which changes the doping level in graphene. All of these together can be exploited to produce new types of graphene/lipids based bio-sensors."

Dr. Michael Hirtz (KIT) explains the L-DPN technique: "The technique utilizes a very sharp tip with an apex in the range of several nanometers as a means to write lipid membranes onto surfaces in a way similar to what a quill pen does with ink on paper. The small size of the tip and the precision machine controlling it allows of course for much smaller patterns, smaller than cells, and even right down to the nanoscale."

"By employing arrays of these tips multiple different mixtures of lipids can be written in parallel, allowing for sub-cellular sized patterns with diverse chemical composition."

.


Related Links
University of Manchester
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
'White graphene' halts rust in high temps
Houston TX (SPX) Oct 15, 2013
Atomically thin sheets of hexagonal boron nitride (h-BN) have the handy benefit of protecting what's underneath from oxidizing even at very high temperatures, Rice University researchers have discovered. One or several layers of the material sometimes called "white graphene" keep materials from oxidizing - or rusting - up to 1,100 degrees Celsius (2,012 degrees Fahrenheit), and can be made ... read more


CARBON WORLDS
Sunshield preparations bring Gaia closer to deep-space Soyuz launch

SES-8 Arrives At Cape Canaveral For SpaceX Falcon 9 Launch

Spaceport Colorado and S3 Sign Memorandum of Understanding

Milky Way-mapping Gaia receives its sunshield

CARBON WORLDS
US shutdown not to hit Indian Mars mission

Martian settlement site to be printed on a printer

Spacecraft snaps dramatic images of giant scar on the surface of Mars

NAU researcher's closer look at Mars reveals new type of impact crater

CARBON WORLDS
NASA's moon landing remembered as a promise of a 'future which never happened'

Russia could build manned lunar base

China unveils its first and unnamed moon rover

Mission to moon will boost research and awareness

CARBON WORLDS
Archival Hubble Images Reveal Neptune's "Lost" Inner Moon

New Horizons - Late in Cruise, and a Binary Ahoy

Pluto Science Conference Exceeds Expectations

SciTechTalk: Grab your erasers, there are more moons than we thought

CARBON WORLDS
Space 'graveyard' reveals bits of an Earth-like planet

Scientists generate first map of clouds on an exoplanet

Diamond 'super-earth' may not be quite as precious

Lonely planet without a star discovered wandering our galaxy

CARBON WORLDS
Russian booster 'not the culprit in saiga kill'

Proton booster back in service after mishap

XCOR And ULA Complete Critical Milestone In Liquid Hydrogen Engine Program

Boeing and Aerojet Rocketdyne Test CST-100 Thrusters

CARBON WORLDS
Ten Years of Chinese Astronauts

NASA vows to review ban on Chinese astronomers

China criticises US space agency over 'discrimination'

NASA ban on Chinese scientists 'inaccurate': lawmaker

CARBON WORLDS
Watery asteroid discovered in dying star points to habitable exoplanets

Controllers prepare to awaken comet hunter from deep-space sleep

Comet ISON's chances of surviving close brush with the Sun

First ever evidence of a comet striking Earth




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement