. Space Travel News .




.
CARBON WORLDS
Diamonds show depth extent of Earth's carbon cycle
by Staff Writers
Washington DC (SPX) Sep 19, 2011

This figure shows the location of the Juina-5 kimberlite in Brazil, where the raw diamonds come from. Thousands of diamonds are examined in order to identify stones that might contain an inclusion. Credit: Image courtesy Science/AAAS.

Scientists have speculated for some time that the Earth's carbon cycle extends deep into the planet's interior, but until now there has been no direct evidence. The mantle-Earth's thickest layer -is largely inaccessible. A team of researchers analyzed diamonds that originated from the lower mantle at depths of 435 miles (700 kilometers) or more, and erupted to the surface in volcanic rocks called kimberlites.

The diamonds contain what are impurities to the gemologist, but are known as mineral inclusions to the geologist. Analysis shows compositions consistent with the mineralogy of oceanic crust.

This finding is the first direct evidence that slabs of oceanic crust sank or subducted into the lower mantle and that material, including carbon, is cycled between Earth's surface and depths of hundreds of miles. The research is published in the September 15, 2011, online Science Express.

The mantle extends from as little as 5 to 1,800 miles (10-2,900 kilometers) beneath the Earth's surface. Most diamonds are free from inclusions and come from depths less than 120 miles (200 km).

But in a few localities researchers have found super-deep diamonds from the depths of the convecting upper and lower mantle, as well as the transition zone in between. Whereas inclusions in diamonds from the depths of the upper mantle and transition zone have been consistent with a surface-rock origin, none from the lower mantle have borne this signature until now.

The team,* which included Carnegie scientists, was led by former Carnegie postdoctoral fellow Michael Walter, now a professor at the University of Bristol, UK. The scientists analyzed minute (one to two hundredths of a millimeter) mineral grains from six diamonds from the Juina region in Brazil.

The analysis showed that diamond inclusions initially crystallized as a single mineral that could form only at depths greater than 435 miles (700 km). But the inclusions recrystallized into multiple minerals as they were carried up to the surface-first probably from a mantle upwelling known as a plume, then as they erupted to the surface in kimberlites

The diamonds were analyzed for carbon at Carnegie. Four of the diamonds contained low amounts of carbon-13, a signature not found in the lower mantle and consistent with an ocean-crust origin at Earth's surface. "The carbon identified in other super-deep, lower mantle diamonds is chiefly mantle-like in composition," remarked co-author Steven Shirey * at Carnegie.

"We looked at the variations in the isotopes of the carbon atoms in the diamonds. Carbon originating in a rock called basalt, which forms from lava at the surface, is often different from that which originates in the mantle, in containing relatively less carbon-13. These super-deep diamonds contained much less carbon-13, which is most consistent with an origin in the organic component found in altered oceanic crust."

"I find it astonishing that we can use the tiniest of mineral grains to show some of the motions of the Earth's mantle at the largest scales," concluded Shirey.

The researchers on the paper are M.J. Walter, S. Kohn, G. Bulanova, and C. Smith of University of Bristol, UK; D. Araujo of Universidade de Brasilia-DF Brazil; A. Steele of Carnegie's Geophysical Laboratory, and S. Shirey, E. Gaillou, and J. Wang of Carnegie's Department of Terrestrial Magnetism. Funding was provided by the NSF in the US, the National Environmental Research Council (NERC) in the UK, and the Carnegie Institution for Science.

Related Links
Carnegie Institution
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet




 

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CARBON WORLDS
Carbon cycle reaches Earth's lower mantle
Washington DC (SPX) Sep 19, 2011
The carbon cycle, upon which most living things depend, reaches much deeper into the Earth than generally supposed-all the way to the lower mantle, researchers report. The findings, which are based on the chemistry of an unusual set of Brazilian diamonds, will be published online by the journal Science, at the Science Express Web site, on 15 September. Science is published by AAAS, the non ... read more


CARBON WORLDS
Arianespace to launch up to four satellites for DIRECTV

NASA unveils new launcher design for Mars missions

First Galileo satellite touches down in French Guiana

European satellite in French Guiana launch

CARBON WORLDS
Opportunity Inspects Next Rock at Endeavour

Opportunity Continues Early Exploration Of Endeavour Crater Rim

Memorial Image Taken on Mars on September 11, 2011

Methane Debate Splits Mars Community

CARBON WORLDS
United Launch Alliance Launches GRAIL Spacecrafts To Moon

NASA launches twin spacecraft to study Moon's core

Second bid to launch NASA's Moon-bound spacecraft

NASA to launch Moon-bound twin spacecraft

CARBON WORLDS
Dwarf Planet Mysteries Beckon to New Horizons

The PI's Perspective: Visiting Four Moons, in Just Four Years, for All Mankind

Citizen Scientists Discover a New Horizons Flyby Target

View from the Summit: Hunting for KBOs at the Top of the World

CARBON WORLDS
Astronomers find extreme weather on an alien world

Latest Exoplanet Haul Includes Super Earth At Habitat Zone Edge

Invisible World Discovered

The diamond planet

CARBON WORLDS
NASA Announces Design for New Deep Space Exploration System

Keeping Rocket Engine Fuel Lines Bubble Free in Space

NASA Tests Five-Segment Solid Rocket Motor

Ball Aerospace To Develop Cryogenic Storage and Transfer Concepts for NASA

CARBON WORLDS
Tiangong 1 might be launched in late September

Chang'e-2 moon orbiter travels around L2 in outer space

China State media says Tiangong 1 to launch in early Sept

Time Limits for Tiangong

CARBON WORLDS
Astronomers Plan Last Look at Asteroid 1999 RQ36 Before OSIRIS-REx Launch

Dawn has completed the first phase of its exploration of Vesta

Japanese Asteroid Mission a Success

Earth-bound asteroids come from stony asteroids


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement