Space Travel News
SOLAR DAILY
Diamond materials as solar-powered electrodes - spectroscopy shows what's important
marker illustration only
Diamond materials as solar-powered electrodes - spectroscopy shows what's important
by Staff Writers
Berlin, Germany (SPX) Oct 16, 2023

It sounds like magic: photoelectrodes could convert the greenhouse gas CO2 back into methanol or N2 molecules into valuable fertiliser - using only the energy of sunlight. An HZB study has now shown that diamond materials are in principle suitable for such photoelectrodes. By combining X-ray spectroscopic techniques at BESSY II with other measurement methods, Tristan Petit's team has succeeded for the first time in precisely tracking which processes are excited by light as well as the crucial role of the surface of the diamond materials.

At first glance, lab-grown diamond materials have little in common with their namesakes in the jewellery shop. They are often opaque, dark and look not spectacular at all. But even if their looks are unimpressive, they are promising in many different applications, for example in brain implants, quantum sensors and computers, as well as metal-free photoelectrode in photo-electrochemical energy conversion. They are fully sustainable and made of carbon only, they degrade little in time compared to metal-based photoelectrodes and they can be industrially produced!

Diamond materials are suitable as metal-free photoelectrodes because when excited by light, they can release electrons in water and trigger chemical reactions that are difficult to initiate otherwise. A concrete example is the reduction of CO2 to methanol which turns the greenhouse gas into a valuable fuel. It would also be exciting to use diamond materials to convert N2 into nitrogen fertiliser NH3, using much less energy than the Haber-Bosch process.

However, diamond electrodes oxidize in water and oxidized surfaces, it was assumed, no longer emit electrons into the water. In addition, the bandgap of diamond is in the UV range (at 5.5 eV), so visible light is unlikely to be sufficient to excite electrons. In spite of this expectation, previous studies have shown puzzling emission of electrons from visible light excitation. A new study by Dr. Tristan Petit's group at HZB now brings new insights and gives cause for hope.

Dr Arsene Chemin, a postdoctoral researcher in Petit's team, studied samples of diamond materials produced at the Fraunhofer Institute for Applied Solid State Physics in Freiburg. The samples were engineered to facilitate the CO2 reduction reaction: doped with boron to insure good electrical conductivity and nanostructured, which gives them huge surfaces to increase the emission of charge carriers such as electrons.

Chemin used four X-ray spectroscopic methods at BESSY II to characterize the surface of the sample and the energy needed to excite specific electronic surface states. Then, he used the surface photovoltage measured in a specialised laboratory at HZB to determine which ones of these states are excited and how the charge carriers are displaced in the samples. In complement, he measured the photoemission of electrons of samples either in air or in liquid. By combining these results, he was able for the first time to draw a comprehensive picture of the processes that take place on the surfaces of the sample after excitation by light.

"Surprisingly, we found almost no difference in the photoemission of charges in liquid, regardless of whether the samples were oxidized or not," says Chemin. This shows that diamond materials are well suited for use in aqueous solutions. Excitation with visible light is also possible: in the case of the boron-doped samples, violet light (3.5 eV) is sufficient to excite the electrons.

"These results are a great cause for optimism," says Chemin: "With diamond materials we have a new class of materials that can be explored and widely used." What's more, also the methodology of this study is interesting: The combination of these different spectroscopic methods could also lead to new breakthroughs in other photoactive semiconductor materials, the physicist points out.

Research Report:Surface-mediated charge transfer of photogenerated carriers in diamond

Related Links
Helmholtz-Zentrum Berlin
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
KMOU researchers propose a novel liquid filter for enhanced solar energy utilization
Busan, South Korea (SPX) Oct 16, 2023
Photovoltaic (PV) modules are devices that convert sunlight into electrical energy. However, they suffer from a low conversion efficiency of around 20% because they can only convert near-infrared wavelengths into electricity, while other wavelengths simply heat up the PV module, reducing its efficiency. To counter this, scientists have developed photovoltaic-thermal (PVT) systems, in which the generated heat is carried away by a heat exchanger containing a coolant fluid (air or liquid). This, in turn, c ... read more

SOLAR DAILY
SOLAR DAILY
Glow in the visible range detected for the first time in the Martian night

Cerberus Fossae Identified as Primary Source of Marsquakes

The Ones Who Make Curiosity Go: Sols 4001-4003

Curiosity rover clocks 4,000 sols on Mars

SOLAR DAILY
University of Bern's LIMS Set to Uncover Moon's Mysteries in 2027

Astronaut who led humanity's first mission around the Moon dead at 95

Australian-Backed SPIDER Payload to Fly on Firefly's 2026 Lunar Mission

Propelling NASA closer to the Moon and Mars with Open Innovation

SOLAR DAILY
Salts and organics observed on Ganymede's surface by June

New jet stream discovered in Jupiter's upper atmosphere

Uranus aurora discovery offers clues to habitable icy worlds

How NASA is protecting Europa Clipper from space radiation

SOLAR DAILY
Major $200M gift propels scientific research in the search for life beyond earth

Webb findings support long-proposed process of planet formation

Scorching, seven-planet system revealed by new Kepler Exoplanet list

Jurassic worlds might be easier to spot than modern Earth

SOLAR DAILY
SpaceX Falcon-9 rocket launches with telecommunications satellites aboard

HK, Macao add thrust to China's space exploration

UK and European Space Agency Commit Funding for Shetland Satellite Launch

ESA further boosts RFA One across Europe

SOLAR DAILY
New scientific experimental samples from China's space station return to Earth

Shenzhou XVI crew return after 'very cool journey'

Chinese astronauts return to Earth with fruitful experimental results

Chinese astronauts return to Earth after 'successful' mission

SOLAR DAILY
SwRI-led Lucy observes first-ever contact binary orbiting an asteroid

SwRI-led Lucy mission shows Dinkinesh asteroid is actually a binary

Dust's Pivotal Role in Dinosaur Extinction Highlighted by Study

In US capital, selfies with asteroid hinting at Earth's origins

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.