Space Travel News  
BIO FUEL
Dangerous wild grass will be used in batteries
by Staff Writers
Moscow, Russia (SPX) Aug 27, 2019

Researchers from NUST MISIS have suggested that the optimal electrode properties can be found in hogweed stems. They consist of a firm bark and a soft inner core, similar to a sponge, forming a diverse porous structure. This design is effective for using carbon material as the basis of electrodes for supercapacitors. In order to turn hogweed stalks into a material suitable for use as electrodes, it was necessary to find the optimal processing technology for them.

Hogweed, which has grown over vast territories of Russia, can be useful as a material for batteries. Scientists from NUST MISIS have investigated the possibilities of fibrous substances in the plant stems. They have turned them into electrodes - elements of devices capable of storing energy. It was experimentally proven that the treated dangerous plant can successfully replace traditional sources of energy without compromising the quality of the batteries.

Supercapacitors are storage devices. They are distinguished from traditional batteries by their high power, long shelf life, and long service life. Such properties are partly explained by the fact that activated carbons with a highly developed surface with a large number of pores of different sizes, act as the electrode material.

These pores provide an increase in the area of the electrodes, on which the maximum volume of the accumulated charge directly depends. Scientists are currently trying to receive carbon materials from various plant raw materials, especially from agricultural waste - from the coconut, almond and walnut shells, husk remaining after cereal processing, etc.

Researchers from NUST MISIS have suggested that the optimal electrode properties can be found in hogweed stems. They consist of a firm bark and a soft inner core, similar to a sponge, forming a diverse porous structure. This design is effective for using carbon material as the basis of electrodes for supercapacitors. In order to turn hogweed stalks into a material suitable for use as electrodes, it was necessary to find the optimal processing technology for them.

The dry stalks of the hogweed were cut into bars about a centimeter long. Then, to remove various inorganic compounds contained in the stems, they were treated with hydrochloric acid, washed and dried. To obtain a carbon material, crushed hogweed stems were saturated with carbon dioxide at a temperature of 400 C. In the next stage, the obtained material was mixed with potassium hydroxide and activated, that is, the appeared pores were opened in an argon atmosphere at various temperatures.

Processing the primary carbon material at a temperature of 900 ? led to the formation of a surface with a large number of pores 2-4 nm in size.

"The main parameter of the supercapacitor is capacity, which means a measure of the ability to accumulate an electric charge, - Oleg Levin, associate professor at the Department of Electrochemistry of St. Petersburg State University, explained. - The capacity obtained from hogweed stems is at the same level as the one obtained from the other materials. Of course, when using, for example, graphene, it will be higher. However, the use of plant waste material for the production of active carbon is without a doubt a global trend. From this perspective, the work of scientists is promising and deserves attention".

However, the leader of the project, the head of the Department of Physical Chemistry at NUST MISIS Professor Mikhail Astakhov emphasizes that the use of hogweed stems for the production of electrodes on an ongoing basis may encounter great difficulties. Indeed, to obtain raw materials you will have to travel all over the country, cutting down the plant and taking it to the enterprise, since it is unreasonable to create sown areas for a dangerous wild plant. Sooner or later, the reserves of the "wild" hogweed may run low. In this case, the technology created for its processing will simply not be needed.

On the other hand, at present, areas covered by powerful hogweed that inhibits the development of other seeds that have fallen into the soil are only increasing.

Research paper


Related Links
National University of Science and Technology MISIS
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Protein factors increasing yield of a biofuel precursor in microscopic algae
Tokyo, Japan (SPX) Aug 09, 2019
As an alternative to traditional fossil fuels, biofuels represent a more environmentally friendly and sustainable fuel source. Plant or animal fats can be converted to biofuels through a process called transesterification. In particular, the storage molecule triacylglycerol (TAG), found in microscopic algae, is one of the most promising sources of fat for biofuel production, as microalgae are small, easy to grow, and reproduce quickly. Therefore, increasing the yield of TAG from microalgae c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
BIO FUEL
Roscosmos postpones joint ESA ExoMars mission after failed parachute tests

All instruments onboard Rosalind Franklin rover

Robotic toolkit added to NASA's Mars 2020 Rover

Ancient Mars was warm with occasional rain, turning cold

BIO FUEL
Astrobotic selects United Launch Alliance Vulcan Centaur Rocket for its first Moon mission

Thomas Pesquet on a new underwater lunar adventure

India's Moon probe enters lunar orbit

NASA asks American companies to deliver supplies for Artemis Lunar missions

BIO FUEL
Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed

Giant Impact Disrupted Jupiter's Core

Young Jupiter Was Smacked Head-On by Massive Newborn Planet

BIO FUEL
Study: NASA data shows Earth-sized exoplanet lacks atmosphere

A rare look at the surface of a rocky exoplanet

New "Gold Open Access" Planetary Science Journal Launched

Does ET exist ponders UVA astronomer

BIO FUEL
SNC selects ULA for Dream Chaser launches

Hall thrusters will enable longer space missions

China launches 3 satellites wth Jielong-1 rocket

Secret Russia weapon project: gamechanger or PR stunt?

BIO FUEL
China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

BIO FUEL
Scientists to use near-Earth object telescope to observe cosmic mergers

Four Candidate Sites Selected for Asteroid Sample Collection

Best of both worlds: asteroids and massive mergers

Critical Observation Made on During First Night of Return to Operations









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.