Space Travel News
SPACEWAR
DARPA, Services Demonstrate Battlefield Airspace Deconfliction Software
ASTARTE is enabling safe, simultaneous operation of manned and unmanned aircraft, missiles, and artillery fire in the contested airspace above an Army division.
DARPA, Services Demonstrate Battlefield Airspace Deconfliction Software
by Staff Writers
Washington DC (SPX) Feb 24, 2023

DARPA's Air Space Total Awareness for Rapid Tactical Execution (ASTARTE) program recently demonstrated new automated flightpath-planning software that successfully deconflicted friendly missiles, artillery fire, and manned and unmanned aircraft while avoiding enemy fires in a simulated battle in contested airspace.

In a demonstration held at the U.S. Army's Mission Command Battle Lab, Ft. Leavenworth, Kansas, in late 2022, the ASTARTE software seamlessly integrated with the Army's Integrated Mission Planning and Airspace Control Tools (IMPACT) software suite. IMPACT is managed by the Aviation Mission Systems and Architecture Project Office in the Program Executive Office for Aviation.

The ASTARTE Program, which began in 2021, is a joint collaboration between DARPA, the Army, and the U.S. Air Force to enable efficient and effective airspace operations and de-confliction in a highly congested anti-access/area denial, known as A2/AD, environment. The program's goal is to provide an accurate, real-time common operational picture of the airspace over an Army division, enabling long-range fire missions, as well as manned and unmanned aircraft operations, to occur safely in the same airspace.

"The demonstration showed that complex route alternatives could be created in seconds, leveraging available permissive airspace to avoid airspace where conflicts would potentially occur," said Paul Zablocky, ASTARTE program manager in DARPA's Strategic Technology Office. "There are many reasons this integration helps the warfighter. Coordinating and consolidating services at the user level greatly reduces procedural burden, which speeds the enterprise.

ASTARTE also increases accuracy by automating tasks and reducing inherent human error. Most importantly, the ASTARTE and IMPACT integration forms a foundation of artificial intelligence-enabled services that will interact with other service component AI tools such as the Air Force's Kessel Run All Domain Operations Suite (KRADOS) for planning and the All Domain Common Platform (ADCP) for operations."

ASTARTE performer Raytheon Technologies developed an automated flightpath-planning capability for fixed and rotary wing aircraft, which includes the capability to deconflict airspace use by routing through or around defined airspace coordinating measures, commonly called ACMs, in both space and time.

General Dynamics Mission Systems (GMDS) developed the Army's IMPACT suite, which adds a Joint All-Domain Command and Control (JADC2) class of data-enabled, over-the-horizon tools to existing airspace management systems to form a multidomain capability supporting the Army's 2030 Multi-Domain Operations vision.

During the demonstration, GDMS and Raytheon identified the interfaces allowing the ASTARTE flightpath planner to receive flight path requests with associated constraints from IMPACT (e.g., timing, altitude range, start and end points), and returned complete deconflicted flight paths back to IMPACT on demand.

The ASTARTE-IMPACT demonstration also illustrated a novel approach for transitioning cutting-edge microservices and software components developed by the science and technology community very quickly into military service programs of records.

ASTARTE is currently wrapping up Phase 2 integration efforts and is scheduled to begin Phase 3 live testing this summer.

Related Links
Defense Advanced Research Projects Agency
Military Space News at SpaceWar.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACEWAR
Luojia-3 01 satellite completes key technical tests
Wuhan, China (XNA) Feb 20, 2023
The Luojia-3 01 satellite has completed several technical tests, and its multi-mode intelligent remote sensing service capability has reached the expected target, according to Wuhan University. Luojia-3 01 is an internet-intelligent remote-sensing scientific experiment satellite, mainly developed by Wuhan University and launched by a Long March-2D rocket on Jan. 15. It adopts the in-orbit high-rate compression and transmission technology independently developed by Wuhan University. Its maxim ... read more

SPACEWAR
SPACEWAR
Drilling the Marker Band Again: Sols 3750-3751

Got Rock Sample: Sol 3755

Another Busy Day on Mars: Sol 3749

Perseverance from Team Curiosity: Sols 3752-3754

SPACEWAR
Liquid nitrogen spray could clean up stubborn moon dust

UK companies to provide services for future Moon missions

ESA invites space firms to create lunar services

China releases Chang'e-4 payloads' scientific datasets

SPACEWAR
Newly discovered form of salty ice could exist on surface of extraterrestrial moons

New aurorae detected on Jupiter's four largest moons

JUICE's final take-off before lift-off

A new ring system discovered in our Solar System

SPACEWAR
"Forbidden" planet orbiting small star challenges gas giant formation theories

Removing traces of life in lab helps NASA scientists study its origins

To new worlds with quantitative spectroscopy

Nanosatellite shows the way to RNA medicine of the future

SPACEWAR
World's first 3D-printed rocket Terran 1 is ready for its maiden flight

Rocket Lab establishes Australian Subsidiary to support rapidly growing Space Sector

Rocket Lab set for dual launch campaigns in Virginia and New Zealand

Successful flight acceptance hot test of CE-20 cryogenic engine

SPACEWAR
China's space station experiments pave way for new space technology

China solicits logos for manned space missions in 2023

Two crews set for Tiangong station in '23

Large number of launches planned

SPACEWAR
Ryugu Asteroid sample reveals organic-rich composition, first analysis shows

Water rich asteroids came from far outside the asteroid belt

New insights from an ancient asteroid

Meteorite crater discovered in French winery

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.