Space Travel News  
STELLAR CHEMISTRY
Coreshine Provides Insight Into Stellar Births

The molecular cloud CB 244 in the constellation Cepheus, 650 light-years from Earth. In such clouds, the Milky Way's light is scattered in different ways: Visible light is predominantly scattered by small grains of dust in the cloud's outer regions ("cloudshine"). The false-color image shows mid-infrared light scattered by larger grains of dust in the interior of the cloud, the newly discovered "coreshine". Image: MPIA
by Staff Writers
Heidelberg, Germany (SPX) Sep 24, 2010
Stars are formed as the dense core regions of cosmic clouds of gas and dust ("molecular clouds") collapse under their own gravity. As a result, matter in these regions becomes ever denser and hotter until, finally, nuclear fusion is ignited: a star is born. This is how our own star, the Sun, came into being; the fusion processes are responsible for the Sun's light, on which life on Earth depends.

The dust grains contained in the collapsing clouds are the raw material out of which an interesting by-product of star formation is made: solar systems and Earth-like planets.

What happens during the earliest phases of this collapse is largely unknown. Enter an international team of astronomers led by Laurent Pagani (LERMA, Observatoire de Paris) and Jurgen Steinacker (Max Planck Institute for Astronomy, Heidelberg, Germany), who have discovered a new phenomenon which promises information about the crucial earliest phase of the formation of stars and planets: "coreshine", the scattering of mid-infrared light (which is ubiquitous in our galaxy) by dust grains inside such dense clouds.

The scattered light carries information about the size and density of the dust particles, about the age of the core region, the spatial distribution of the gas, the prehistory of the material that will end up in planets, and about chemical processes in the interior of the cloud.

The discovery is based on observations with NASA's SPITZER Space Telescope. As published this February, Steinacker, Pagani and colleagues from Grenoble and Pasadena detected unexpected mid-infrared radiation from the molecular cloud L 183 in the constellation Serpens Cauda ("Head of the snake"), at a distance of 360 light-years.

The radiation appeared to originate in the cloud's dense core. Comparing their measurements with detailed simulations, the astronomers were able to show that they were dealing with light scattered by dust particles with diameters of around 1 micrometer (one millionth of a meter).

The follow-up research that is now being published in Science clinched the case: The researchers examined 110 molecular clouds at distances between 300 and 1300 light-years, which had been observed with Spitzer in the course of several survey programs.

The analysis showed that the L 183 radiation was more than a fluke. Instead, it revealed that coreshine is a widespread astronomical phenomenon: Roughly half of the cloud cores exhibited coreshine, mid-infrared radiation associated with scattering from dust grains in their densest regions.

The discovery of coreshine suggests a host of follow-on projects - for the SPITZER Space Telescope as well as for the James Webb Space Telescope, which is due to be launched in 2014. The first coreshine observations have yielded promising results: The unexpected presence of larger grains of dust (diameters of around a millionth of a meter) shows that these grains begin their growth even before cloud collapse commences.

An observation of particular interest concerns clouds in the Southern constellation Vela, in which no coreshine is present. It is known that this region was disturbed by several stellar (supernova) explosions. Steinacker and his colleagues hypothesize that these explosions have destroyed whatever larger dust grains had been present in this region.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
MPIA
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


STELLAR CHEMISTRY
Shining Starlight On The Dark Cocoons Of Star Birth
Washington DC (SPX) Sep 24, 2010
Astronomers have discovered a new, cosmic phenomenon, termed "coreshine," which is revealing new information about how stars and planets come to be. The scientists used data from NASA's Spitzer Space Telescope to measure infrared light deflecting off cores - cold, dark cocoons where young stars and planetary systems are blossoming. This coreshine effect, which occurs when starlight from ne ... read more







STELLAR CHEMISTRY
Vandenberg launches Minotaur IV

LockMart And ATK Athena Launch Vehicles Selected As A NASA Launch Services Provider

Sirius XM-5 Satellite Delivered To Baikonur For October Launch

Emerging Technologies May Fuel Revolutionary Launcher

STELLAR CHEMISTRY
Martian Moon Phobos May Have Formed by Catastrophic Blast

First Results From Herschel Mars Observations

Peculiar Phenomena During Northern Spring On Mars

Opportunity Approaching Possible Meteorite

STELLAR CHEMISTRY
Magnetic Anomalies Shield The Moon

New Australian footage of Neil Armstrong's moon walk

Watch Out For The Super Harvest Moon

Water on Moon is bad news for China's lunar telescope

STELLAR CHEMISTRY
The Longest Space Mission

Uranus may have been cosmic 'pinball'

Flying To The Edge

Picture-Perfect Pluto Practice

STELLAR CHEMISTRY
This Planet Smells Funny

Scientists looking to spot alien oceans

Deadly Tides Mean Early Exit For Hot Jupiters

Can We Spot Volcanoes On Alien Worlds

STELLAR CHEMISTRY
U.K. predicts 'spaceplane' in 10 years

Successful Static Testing Of L 110 Liquid Core Stage Of GSLV 3

Danish rocketeers abort launch attempt

Technical glitch grounds homemade Danish rocket

STELLAR CHEMISTRY
China's Mystery Moon Rocket

China Ready For Another Lunar Encounter

China keeps up busy space launch schedule

Space-Age Device To Deliver More Efficient Health Care On Earth And Above

STELLAR CHEMISTRY
Pan-STARRS Discovers Potentially Hazardous Asteroid

Rosetta Should Look South For Safe Landing Site

Scientists find 'rubble pile' asteroids

Avoiding An Asteroid Collision


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement