Subscribe free to our newsletters via your
. Space Travel News .




TECTONICS
Congestion in the Earth's mantle
by Staff Writers
Jena, Germany (SPX) Apr 03, 2013


This is Mineralogist Prof. Dr. Falko Langenhorst from Jena University (Germany). Credit: Photo: Anne Guenther/FSU.

The Earth is dynamic. What we perceive as solid ground beneath our feet, is in reality constantly changing. In the space of a year Africa and America are drifting apart at the back of the Middle Atlantic for some centimeters while the floor of the Pacific Ocean is subducted underneath the South American Continent. "In 100 million years' time Africa will be pulled apart and North Australia will be at the equator," says Prof.

Dr. Falko Langenhorst from the Friedrich Schiller University Jena (Germany). Plate tectonics is leading to a permanent renewal of the ocean floors, the mineralogist explains. The gaps between the drifting slabs are being filled up by rising melt, solidifying to new oceanic crust. In other regions the slabs dive into the deep interior of the Earth and mix with the surrounding Earth's mantle.

The Earth is the only planet in our solar system, conducting such a 'facelift' on a regular basis. But the continuous up and down on the Earth`s crust doesn't run smoothly everywhere. "Seismic measurements show that in some mantle regions, where one slab is subducted underneath another one, the movement stagnates, as soon as the rocks have reached a certain depth," says Prof. Langenhorst.

The causes of the 'congestion' of the subducted plate are still unknown. In the current issue of the science magazine 'Nature Geoscience' Prof. Langenhorst and earth scientists of Bayreuth University now explain the phenomenon for the first time (DOI: 10.1038/NGEO1772).

According to this, the rocks of the submerging ocean plate pond at a depth of 440 to 650 kilometers - in the transition zone between the upper and the lower Earth mantle.

"The reason for that can be found in the slow diffusion and transformation of mineral components," mineralogist Langenhorst explains. On the basis of high pressure experiments the scientists were able to clarify things: under the given pressure and temperature in this depth, the exchange of elements between the main minerals of the subducted ocean plate - pyroxene and garnet - is slowed down to an extreme extent.

"The diffusion of a pyroxene-component in garnet is so slow, that the submerging rocks don't become denser and heavier, and therefore stagnate," the Jena scientist says.

Interestingly there is congestion in the earth mantle exactly where the ocean floor submerges particularly fast into the interior of the Earth. "In the Tonga rift off Japan for example, the speed of subduction is very high," Prof. Langenhorst states. Thereby the submerging rocks of the oceanic plate stay relatively cold up to great depth, which makes the exchange of elements between the mineral components exceptionally difficult.

"It takes about 100 Million years for pyroxene crystals which are only 1 mm in size to diffuse into the garnet. For this amount of time the submerging plate stagnates," Langenhorst describes the rock congestion.

It can probably only diffuse at the boundary of the lower Earth mantle. Because then pyroxene changes into the mineral akimotoite due to the higher pressure in the depth of 650 kilometers. "This could lead to an immediate rise in the rock density and would enable the submerging into greater depths."

Van Mierlo VL et al. Stagnation of subducting slabs in the transition zone due to slow diffusion in the majoritic garnet. Nature Geoscience, DOI: 10.1038/NGEO1772

.


Related Links
Friedrich-Schiller-Universitaet Jena
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECTONICS
Scripps scientists image deep magma beneath Pacific seafloor volcano
San Diego CA (SPX) Apr 02, 2013
Since the plate tectonics revolution of the 1960s, scientists have known that new seafloor is created throughout the major ocean basins at linear chains of volcanoes known as mid-ocean ridges. But where exactly does the erupted magma come from? Researchers at Scripps Institution of Oceanography at UC San Diego now have a better idea after capturing a unique image of a site deep in the eart ... read more


TECTONICS
Future Looks Bright for Private US Space Ventures

Europe's next ATV resupply spacecraft enters final preparatio?ns for its Ariane 5 launch

ILS Proton Launches Satmex 8 Satellite for Satmex

When quality counts: Arianespace reaffirms its North American market presence

TECTONICS
BusinessCom Networks Connects Mars 2013

SwRI study finds liquid water flowing above and below frozen Alaskan sand dunes, hints of a wetter Mars

Opportunity Moves Into Place for Quiet Period of Operations

Measuring Mars: The MAVEN Magnetometer

TECTONICS
Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

Ultraviolet spectrograph observes mercury and hydrogen in GRAIL impact plumes

NASA's LRO Sees GRAIL's Explosive Farewell

TECTONICS
'Vulcan' wins Pluto moon name vote

Public to vote on names for Pluto moons

The PI's Perspective: The Seven-Year Itch

New Horizons Gets a New Year's Workout

TECTONICS
The Great Exoplanet Debate

Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

TECTONICS
Swiss firm plans robotic mini-shuttle

XCOR Driving Rocket Science Forward With Lynx Suborbital Vehicle

ATK Successfully Ground Tests New CASTOR 30XL Upper Stage Solid Rocket Motor

NASA Turns Up the Heat on Construction of the Space Launch System

TECTONICS
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

TECTONICS
Dawn remains in silent pursuit of dwarf planet Ceres

NASA's Swift Sizes Up Comet ISON

NASA Scientists Find Moon, Asteroids Share History

Goldstone Radar Snags Images of Asteroid 2013 ET




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement