Space Travel News  
SOLAR DAILY
Closing in on state-of-the-art semiconductor solar cells
by Staff Writers
Thuwal, Saudi Arabia (SPX) May 07, 2021

stock image only

A synthetic approach that improves absorber layers in perovskite solar cells could help them achieve their full potential and draw closer to the performance of leading gallium arsenide devices.

Solar cells that rely on perovskite thin films to capture sunlight are the fastest growing photovoltaic technology. Cheaper and easier to manufacture and incorporate into devices than conventional semiconductors, lead halide perovskites also effectively absorb visible light and display long charge carrier diffusion lengths - an indicator of their ability to maintain light-induced electrons and holes separation and facilitate charge transport.

Performance of solar cells hinges on absorber materials with a high-quality crystal structure and a narrow bandgap to maximize sunlight harvesting. This optimal bandgap range spans energies of 1.1 to 1.4 eV, which corresponds to near-infrared wavelengths.

Absorber layers containing polycrystalline lead halide perovskites have provided high-efficiency solar cells. Their performance, however, has been affected by considerable structural disorder and defects. Formamidinium lead triiodide features the smallest bandgap to date, but this bandgap exceeds the optimal range for single-junction devices. One way to reduce the bandgap of perovskites involves forming lead-tin alloys in the absorber, but this introduces crystal defects and instability.

Now, a team from KAUST has developed an approach using a microns-thick absorber layer consisting of perovskite single crystals to minimize the bandgap. The crystals contain a mixture of methylammonium and formamidinium organic cations.

The researchers incorporated the mixed-cation perovskite into unconventional inverted p-i-n solar cells, in which the absorber is sandwiched between an electron transport top layer and a hole transport bottom layer. The resulting solar cells exhibited an efficiency of 22.8 percent, surpassing the best-performing devices using single-crystal methylammonium lead triiodide.

"We had known that mixed-cation single-crystal absorbers could outperform single-cation absorbers due to their lower bandgap and superior optoelectronic qualities. However, this had not been realized before because of challenges in crystal growth and device integration," says Abdullah Alsalloum, a Ph.D. student in Osman Bakr's group.

The external quantum efficiency of the mixed-cation perovskite film, which measures its effectiveness when converting incoming light into charge carriers, shifted toward near-infrared wavelengths from that of polycrystalline formamidinium lead triiodide, consistent with its smaller bandgap. "By utilizing a thicker single-crystal absorber layer, we expanded the absorption range of the film so that it's very close to the optimal range," Alsalloum says.

The team is working on enhancing device performance and stability to get even closer to the top-performing gallium arsenide solar cells. "Future studies include optimizing device interfaces and exploring more favorable device structures," Alsalloum adds.

Research paper


Related Links
King Abdullah University Of Science and Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
'Molecular glue' makes perovskite solar cells dramatically more reliable over time
Providence RI (SPX) May 07, 2021
A research team from Brown University has made a major step toward improving the long-term reliability of perovskite solar cells, an emerging clean energy technology. In a study to be published on Friday, May 7 in the journal Science, the team demonstrates a "molecular glue" that keeps a key interface inside cells from degrading. The treatment dramatically increases cells' stability and reliability over time, while also improving the efficiency with which they convert sunlight into electricity. "T ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Why Ingenuity's fifth flight will be different

NASA extends Mars helicopter mission to assist rover

How Zhurong will attempt to touch down on the red planet

Mars Ingenuity helicopter given new scouting mission

SOLAR DAILY
Measuring the Moon's nano dust is no small matter

Apollo 11 astronaut Michael Collins dead at 90

Blue Origin protests NASA choice of SpaceX to land astronauts on Moon

China, Russia welcome int'l partners in moon station cooperation

SOLAR DAILY
New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered

SOLAR DAILY
Astronomers detect first ever hydroxyl molecule signature in an exoplanet atmosphere

NASA's Webb to study young exoplanets on the edge

When the atmosphere isn't enough

As different as day and night

SOLAR DAILY
NASA continues RS-25 engine testing for future Artemis missions

ISS astronauts splash down off Florida on SpaceX craft

Small launchers - big market

Astronauts leave ISS, begin return journey to Earth on SpaceX craft

SOLAR DAILY
China's space station takes shared future concept to space

China launches space station core module Tianhe

Core capsule launched into orbit

Mars mission team prepares for its toughest challenge

SOLAR DAILY
Lessons learnt from simulated strike

New View of Asteroid Ryugu's Surface

New ESA telescope in South America to search for asteroids

Robotic spacecraft will fly to asteroid, comet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.