. Space Travel News .




.
ENERGY TECH
Clearing a Potential Road Block to Bisabolane
by Lynn Yarris
Berkeley CA (SPX) Jan 13, 2012

From left, Andy DeGiovanni, Paul Adams, Pamela Peralta-Yahya and Ryan McAndrew were members of the JBEI team that determined the 3D structure of a protein that is critical to the microbial-based production of bisabolane biofuel. (Photo by Roy Kaltschmidt, Berkeley Lab).

The recent discovery that bisabolane, a member of the terpene class of chemical compounds used in fragrances and flavorings, holds high promise as a biosynthetic alternative to D2 diesel fuel has generated keen interest in the green energy community and the trucking industry.

Now a second team of researchers with the U.S Department of Energy (DOE)'s Joint BioEnergy Institute (JBEI) has determined the three-dimensional crystal structure of a protein that is key to boosting the microbial-based production of bisabolane as an advanced biofuel.

The JBEI research team, led by bioengineers Paul Adams and Jay Keasling, solved the protein crystal structure of an enzyme in the Grand fir (Abies grandis) that synthesizes bisabolene, the immediate terpene precursor to bisabolane.

The performance of this enzyme - the Abies grandis a-bisabolene synthase (AgBIS) - when engineered into microbes, has resulted in a bottleneck that hampers the conversion by the microbes of simple sugars into bisabolene.

"Our high resolution structure of AgBIS should make it possible to design changes in the enzyme that will enable microbes to make bisabolene faster," says Adams, a leading authority on x-ray crystallography.

"It should also enable us to engineer out inhibition effects that slow throughput, and perhaps also engineer the enzyme to produce other kinds of fuels similar to bisabolane."

Adams, who heads JBEI's Technologies Division, is the corresponding author of a paper describing this work in the Cell Press journal Structure. The paper is titled "Structure of a Three-Domain Sesquiterpene Synthase: A Prospective Target for Advanced Biofuels Production."

Co-authoring it with Adams and Keasling were Ryan McAndrew, Pamela Peralta-Yahya, Andy DeGiovanni, Jose Pereira and Masood Hadi.

JBEI is one of three DOE Bioenergy Research Centers established by DOE's Office of Science to advance the technology for the commercial production of advanced biofuels. It is a multi-institutional partnership led by the Lawrence Berkeley National Laboratory (Berkeley Lab) and headquartered in Emeryville, CA.

This past fall, JBEI researchers identified bisabolane as a potential new advanced biofuel that could replace D2 diesel, today's standard fuel for diesel engines, with a clean, green, renewable alternative that's produced in the United States. Using the tools of synthetic biology, the researchers engineered strains of bacteria and yeast to produce bisabolene from simple sugars, which was then hydrogenated into bisabolane.

While showing much promise, the yields of bisabolene have to be improved for microbial-based production of bisabolane fuel to be commercially viable.

"The inefficient terpene synthase enzyme is one of the bottlenecks in the metabolic pathway used by the engineered microbes," says Peralta-Yahya, a lead member of the earlier JBEI team as well as the current team.

"Knowing the AgBIS crystal structure will guide us in engineering it for improved catalytic efficiency and stability, which should bring our bisabolene yields closer to economic competitiveness."

Peralta-Yahya and her colleagues determined that the AgBIS enzyme consists of three helical domains, the first three-domain structure ever found in a synthase of sesquiterpenes - terpene compounds that contain 15 carbon atoms. The discovery of this unique structure holds importance on several fronts, as co-lead author of the Structure paper McAndrew explains.

"That we found the structure of AgBIS to be more similar to diterpene (20 carbon terpene compounds) synthases not only provides us with insight into the function of these less well characterized enzymes, it also provides us with clues to the evolutionary heritage as the archetypal three-domain terpenoid synthases became two-domain sesquiterpene synthases in plants.

"Furthering our knowledge of the structures and functions of terpenoid synthases may prove to have abundant practical applications aside from advanced biofuels because these enzymes produce a wide variety of specialized chemicals."

Solving the three-dimensional crystal structure of AgBIS was made possible by the protein crystallography capabilities of Berkeley Lab's Advanced Light Source (ALS), a DOE Office of Science national user facility for synchrotron radiation, and the first of the world's third generation light sources.

For this work, the JBEI team used three of the five protein crystallography beamlines operated by the Berkeley Center for Structural Biology (BCSB) - beamlines 8.2.1, 8.2.2, and 5.0.3.

"We needed to use multiple beamlines because we collected data on several crystals - the protein by itself, and the protein with different inhibitors/cofactors," says Adams, who headed the BCSB from 2004 to 2011.

"Also, the approach we used to solve the AgBIS structure required high flux tunable x-rays such as those provided at 8.2.1 and 8.2.2, which are superbend beamlines."

This research was supported by the DOE Office of Science.

Related Links
Lawrence Berkeley National Laboratory
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries



And it's 3... 2... 1... blastoff! Discover the thrill of a real-life rocket launch.



.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
Venezuela mulls revival of neglected ports
Caracas, Venezuela (UPI) Jan 11, 2012
Venezuela is pushing for an early regeneration of its maritime and defense port facilities, neglected over many years and found to be lacking in basic infrastructural capacity. Moves for the development and refurbishment of the country's ports so far have attracted a major Chinese investor, China Harbor Engineering Co., which pledged an initial $600 million. More suitors are expected to ... read more


ENERGY TECH
China to launch Bolivian satellite in 2013: Chinese Ambassador

Ariane 5, Soyuz, Vega: Three world-changing launch vehicles

Satellites: Europe's Arianespace sets 13 launches for 2012

Arianespace Set To Ride The Power of Three In 2012

ENERGY TECH
Russia was well aware of Phobos-Grunt mission risks

The Challenges of Building A House on Mars

'Greeley Haven' is Winter Workplace for Mars Rover

Mars rover to spend winter at 'Greeley Haven,' named for late ASU geologist Ronald Greeley

ENERGY TECH
'Mini moons' may surround Earth

Rare Moon mineral found in Australia

Ecliptic Shoots for Moon at End of a Record Year

NASA's Twin Grail Spacecraft Reunite in Lunar Orbit

ENERGY TECH
SwRI researchers discover new evidence for complex molecules on Pluto's surface

New Horizons Becomes Closest Spacecraft to Approach Pluto

Pluto's Hidden Ocean

Is the Pluto System Dangerous?

ENERGY TECH
Milky Way teaming with 'billions' of planets: study

Scientists searching for Earth-type planets should consider two-star system

Wanted: Habitable Moons

Subaru's Sharp Eye Confirms Signs of Unseen Planets in the Dust Ring of HR 4796 A

ENERGY TECH
Orion Drop Test - Jan. 06, 2012

Ball Aerospace Submits Cryogenic Propellant Storage Mission Concept to NASA

Fifty-Seven Student Rocket Teams to Take NASA Launch Challenge

Europe's Vega rocket launch set for early February

ENERGY TECH
China launches Ziyuan III satellite

Spying on Tiangong

China's space ambitions ally glory with pragmatism

Why The X-37B Is Not Spying On Tiangong

ENERGY TECH
Dawn Wraps Up A Stunning Year Of Asteroid Exploration

Space Mountain Produces Terrestrial Meteorites

Christmas Comet Lovejoy Captured at Paranal

Dawn Obtains First Low Altitude Images of Vesta


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement